	$\begin{aligned} & \text { Mane } \\ & \text { of } \\ & \text { equipt. } \end{aligned}$	Nat.	Punction	Dust Speed ar Benwhath	$\begin{aligned} & \text { Crypto } \\ & \text { Prino-ple } \end{aligned}$	Approx. Slze	Aprrex. Wt.	Devel opment or Produetion Status	$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { pax } \end{aligned}$	Estimated cost	Ref.	Remarks
1.	$\frac{\text { arsix }}{500}$	u.s.	Pixed plant orsax.	$\begin{aligned} & 1000 \\ & \text { beses } \end{aligned}$	Specal Blectronic Keyer	Tive $\begin{gathered} 7 \times 22^{2} \\ \text { bays } \end{gathered}$	5000	In proauction	Biner/ Thate only.	\$75,000	32	Equipmert can be used to encypher Tere type raltichtrmel equipmente AN/ROC-5 or AN/RCO-14.
2.	Mounteberk	Er:	Rhed plant or shipborne crax	$\begin{aligned} & 1000 \\ & \text { ande } \end{aligned}$	Double rutte	Two 61 bays	$\begin{aligned} & 600 \\ & \text { lue } \end{aligned}$	Development models under testi	Black/ Whte mily	$=$	69	Pinn models will operate at 1750 beuads.
3.	$\begin{aligned} & \text { Arsax } \\ & \text { dsoy } \end{aligned}$	4. 8.	Variable Speed Generel purpose system for tield use	$\begin{gathered} 500 \\ 12,000 \\ 1 \text { tras } \end{gathered}$	39 stage noken	$20^{\prime \prime} \times 301 \times 60$	4.35 ms	Lub. modelas an luest	Black/ White only	-	33	Wire or VIf madio
4.	$\frac{\text { nesix }}{\text { DS05 }}$	U.s.	Hised Plant Bromacast	$\begin{aligned} & 1000 \\ & \text { beale } \end{aligned}$	37 stage Koken	Transmitter twis bley Rerceines One 4t hy	$\begin{gathered} 7 x \\ 600 / 700 \\ \text { mbs } \\ \text { rix } \\ 300 \text { bes } \end{gathered}$	Bytheering models In late 54	Blinel/ thite onis	-	34	Lung range Wire or H. F. radlo syctem. Recelvers mey be shipborne
5.	$\begin{aligned} & \text { apsazy } \\ & \text { D7 } 508 \end{aligned}$	U.S.	finle tone nayptor for Arsix D503	($=$		3 drawers d and approve	100 16: d for rele	deemeroh only ase by NSA on 06-	Halr tote $11-2014$			A $2^{\prime \prime}$ level quaviser for Phif tane platures. Deffrition not yet deternined.

	Equpt: Nare	Nel ${ }^{\text {a }}$	Pexer	Spees	Trupu	cutpue	$\begin{aligned} & \text { giyste } \\ & \text { pidrusule } \end{aligned}$	size	Wetent	Drysl winent or Praduetion 9 ur tue		hefference	Remarks
4	$\left\lvert\, \begin{aligned} & \text { Arsan } \\ & \hline,-7 l \end{aligned}\right.$	U.S.	Manuel (Eneunt tic)	15/20 w.e.m.	Reyobart	Trpe Erinter	10 ec pt bermiting xuthers		10 lls	Binal Big. midels by Tune 9	s 50	Page 1	Total lowd 14, 7bs
2	portex	Br.	$45 v$ sets contived sa+tery	70 wepere.	Lev:en Seltins 6us.	Toue Erlite	836 p permutlis rotores		(1) is.	frigy trial modela avallatle	2150/50	Page 46	Total lad 4 lis.
3	Arsaw 36	1.5	Merur.	10/5 4.8 .4	Keytayre	4ise Srinter	In ul 8hnellu		18119	Produrition new atatting on crder for 1,500 mi hines	6850	Page 3	
4	$\begin{aligned} & \text { Asem } \\ & \text { D. } 21 \end{aligned}$	U1. ${ }^{\text {S. }}$	Nerual	10/15 w D.in.	Letter Ef ning	thine Brutal	of rey key	(5,5mets	31. $1 \times$	It service test	595	Paze	
5	Rookex	8 Fr .	Suy A. 0.	50 ris.m.	5urle	$\begin{aligned} & 5 \text { why } \\ & \text { lape fr } \\ & \text { Prise } \end{aligned}$	$\begin{aligned} & \text { Oif key } \\ & \text { Time } \end{aligned}$	2915314	50. 3^{3}	pratu tion Completor		Page 5	
6	ATsam 7	U.S		60 w y. $=$.	Xeytcorl	thas Pr:wet	$\begin{aligned} & 5 \text { sis y! } \\ & \text { nemmiling } \\ & \text { noters } \end{aligned}$	\|larimer	184 14s.	In production	81,900	Page 4	$\begin{aligned} & \text { Aboins crypto } \\ & \text { Total lystea sh ibs. } \end{aligned}$
7	ABSAM 47	U. S .	$\begin{aligned} & 115 y \text { 10.00 } \\ & \text { sy } 2 . c . \end{aligned}$	$60 \mathrm{~mm} . \mathrm{m}$	Megtoard	Tape printer	4 et plt permuting ne tye	\"Mratis92"	43 xbm	Priturition be start Apr. 34	A 5.500	Prage 5	
\bullet	Atsami 4 e	U.S.	115v mi/mo	60 w.p.u.	Keyborra	tube Printer	$836{ }^{3}$. pertrut the xetrore		50 16s.	FHret Bos: midel Pel. 15	Q6.500	Page 6	Adonis sypto
9	struTET	Bre	A.C. Supply	60 w.p.m.	Kerborat	Tape Prunter	1036 pt permatug petors	4 u. et.	3, 18s	Dev. Model due Mar. 54	c 9	Prese 50	Cheok prluter on keytard mput. Capeble of ADONTS geration
10	frideagom	Br.	A.C. Supy y	60 Nin .17	Is untt	5 unix cloocrival	1036 pt permuting retors	- quit It.	100 31 sm .	Sug. Model due June 5 St	¢ 9	Fage 51	Orfy ogramhtanty 1aentieat! STWCTET
11	$\begin{aligned} & \text { fyrex } \\ & \text { fypsy } \\ & \text { frest } \end{aligned}$	Br.	A.C. yout	45 wip mi.	Keýboard	Ther 2nlnter	326 pli. pemulting rutaxs	$31 \times 1 \times 15$	$160 \mathrm{lts}$.	Pratur lion Ompreted		$\begin{aligned} & \text { Paze } 47 \\ & \text { Rest is } \end{aligned}$	typex 23 ie alay 4 fer col way
18	lose 889	U.s.	11sv acha. 0 50V 50 ols with adnylors	60 w usur	Keybiara	Tuye Pumber			$92 \mathrm{lins}$.	Pr cavetton Completer	\$ 500	Paxe 7	
13	$\begin{aligned} & \text { hersim } \\ & \text { es y } \end{aligned}$	U.S.	115 y me/bo	60 winem.	Keyboard	Tripe Printer		15"x9"x1"	9711*:	production completed	2t,500	Pusa 9	$\begin{aligned} & \text { Alsh hrime as } \\ & \text { csp } 1700 \text {. } \end{aligned}$

Equipt. Name			nchronous or Nory Synchroncus Non Synalk.	Mectro Meohan-Ical ormlectronioElectro Mech. (S)	Speed $60 / 100$ w.p.m.	Trput Teletypenriter Siznals	CryptePrinciple936 pt. permutingrotors	$\frac{\text { sine }}{15^{4} \times 16^{4} \times 77^{14}}$	Weight Lsths, with- out caryy- ing case	Developnent or Production Status Produotion starts Sept. 154	EstIL nated Cost $10,000$	Ref- erence Page 10	Remarks
1	APSAM 9	U.S.											
2	Mion Synch. Mercury	Br.	Non Synch.	Miectro Meah.	66 wip.rin.	Teletypewxiter Signals	64131 pl. aoubie fotor permuting maze	$\begin{aligned} & 2 \text { x } 2 \text { y } \\ & \text { Console } \end{aligned}$	200 1bs.	Limited numbers only	E850	Pege 55	
3	Circuit Mercury	Er.	Symch.	Electro Mech. (8)	66 w.p.m.	Teletypemriter Simals	$6+431$ pta deuble rotor permuting maze	Two $2^{1} \times 2 x^{3} \times \mathrm{con}=$ soles and 6 bay	$\begin{aligned} & 500 \text { 16s, } \\ & \text { cotal } \end{aligned}$	In use and production	182,500	Page 58	
4	Minster	Br.	Non Synch.	R1ectro Mech.	66 m.p.m.	Teletypewriter Simmals	631 pt. double rotors (A)	$284 \times 194 \times 16$ "	135 7bs.	Develoxment complete. Nome in production.	c 7	Page 53	
5	Metropole	Bre	Nor Synck.	Eieotro Mech. (E)	66 w. pam.	reletypewalter Slenels	651 pt. acuble netor permuting	28" $\times 19$ "x $0^{\prime \prime}$	135 168:	Under development	E ?	Page 54	
6	$\begin{gathered} (\text { AFSAM } 15) \\ \text { AFSAZZ } \\ \text { D. } 7315 \end{gathered}$	4.s.	Synch.	Eleotro Mech. (E)	$\begin{aligned} & 60 \text { or } 100 \\ & \text { w. p.m. } \end{aligned}$	Teletypenriter Signels Tape only	Uses Arsay 9 unnt with Aesam 409	$\begin{aligned} & 2 \text { umits } \\ & 15^{\prime \prime} \times 20^{\prime \prime} \times 15 t^{\prime \prime} \\ & 1 \text { vinit } \\ & 144^{\prime \prime} x 9^{\prime \prime} x 7^{\prime \prime} \end{aligned}$	221 16s.	Service test models due June 54.	\$7.500	Page 15	(T)
7	5000	Rr.	Synch.	Electro Meoh. (S)	$66 \mathrm{w} \cdot \mathrm{p}$ m. ${ }^{\text {m. }}$	Teletypewriter Symals	One time Key Pape (A)	6i hoy	450 16s.	In use and production	c2,500	Page 59	(I)
8	Artichoke	Br.	Synch.	Electronio	Two 66/100 w,pm. Chamels	Teletypemriter Signals	Darble Tutte (A)	7' bey	700 16s.	Engineering models on trial	c4,000	Page 60	(1)
9	$\begin{aligned} & \text { Rollick I } \\ & \text { Phillamel } \end{aligned}$	Ar.	Non Synch.	Electronic	66 w. y .m.	Teletypewriter Signale	Single Titte (A)	$54 \pi \times 22^{\prime \prime} \times 12^{\prime \prime}$	250 16s.	Iumited numbers in use. Production now switohed to Phillomel.	21,200	Page 56	
10	$\begin{aligned} & \text { APSAM } \\ & \text { D. } 26 \end{aligned}$	10.s.	Synch.	Electronic	$\begin{aligned} & 60 / 100 \\ & \text { w.y.m. } \end{aligned}$	Teletyperriter Stgrais	53 stage Koken (A)	6. bay	500 16s.	First engmeering models under way	85,000	Page 20	Anti depth Seature ised (I)
11	$\begin{aligned} & \text { IFSAM } \\ & \text { D, } 22 \end{aligned}$	\%.s.	Synch.	Electronic	Pow 60 w.an chanmels	AN/PGC. 5	53 stage koken (A)	2 units each $48^{17} \times 24^{14} \times 24^{14}$	500 16s.	Firal development modele first quarter 1954	18,000	Page 19	(T)
12	corvertor No. 5	Br.	Synch. or Non Symih.	Electronic	$60 \mathrm{w} . \mathrm{pm}$.	5 000. or Teletyperriter Signels	Dounic Sutie (A)	61 bry	500 Ibs .	Development models due late 1953	122,000	$\begin{aligned} & \text { Page 57) } \\ & \text { Page 61) } \end{aligned}$	
13	Incubator	Br.	Non Synch.	Blectronic	$66 \mathrm{w} . \mathrm{pm}$.	Teletypewriter Simnals	Cypher Text Auto Key	Say 24 " cube	Say 50 16s.	Breadboard stage omy	$\begin{aligned} & \text { Say } \\ & \text { cyot } \end{aligned}$	Page 62	
14	$\begin{aligned} & (s s m, 4) \\ & \pi / / 160 / \mathrm{rc} \end{aligned}$	IU.s.	Symoh.	Electronic	60 w.y.m.	$\begin{aligned} & \text { Teletypemriter } \\ & \text { Signals } \end{aligned}$	None, Synchronlser and mixer	$19^{\prime \prime} \times 18^{\prime 2} \times 12^{\prime \prime}$	130 lbs.	Proauction completed	\$1,200	Page 18	
15	SSM. 3	U.S.	Non Symeh.	Electronic	60 r.p.ri.	Teletyperciter Slenals	None: Mixer only	$84 \times 104 \times 15$ "	10 ibs, without power supply	Production dropped	$\$ 150$	Page 17	
16	arsaz $\text { D. } 7305$	U.s.	Synoh.	Electronic	$\begin{aligned} & 60 / 100 \\ & \text { w.p.il. } \end{aligned}$	seletypewriter Signals Trepe only	None. Messege Synchroniser only	1 cu. ft.	20 lbs	ligeineexing nodels Aprill 54	\$500	Page 16	
17	$\begin{gathered} \operatorname{AFS} .11 \\ 4 . / 45 \end{gathered}$	U. S.	Non Synch.	Electro Mech.	60 w.p.rin.	44-Tape only 45 -Keyboera or tape	One time Key Tape (A)	0.5 cu. ft.	20 16s.	Development suspended	\$500	$\begin{aligned} & \text { Pages } 13 \\ & 14 \end{aligned}$	
18	$\frac{\text { ARSMM }}{2-1}$	U.s.	Non Synch.	Electro Mech.	60 w.p.m.	Teletyperriter Signals	526 pt. rotor Aiditive key (A)	194×14 "x11"	73: 16s.	Production corpleted	82,000	Page 11	Requixes encilllary oombining equipnent
19	ArSAM 4A (sicmin)	10.s.	Non Synch.	Electro Mech.	60 w.p.m.	Sell-contained keyboard	826 pt. motor Acaltive Xey (A)	$22^{\frac{1}{2}} \times 25 \frac{1}{2}^{4} \times 17^{\prime \prime}$	252 1bs.	Production completed	85,000	Page 12	

[^0]Nom:- The figures entered in the Colum labelled Estimeted Cont must be regarded as anreliable, as they are based on production runs of differing sizes.

	squipt: Name	Nat.	Function	Digit Speed or Bapdwidth	Ceypto principle	Approx. Sixe	$\begin{aligned} & \text { Approx. } \\ & \text { WI: } \end{aligned}$	Dereloment or Production Status	Es thna ted Cost	Radio or Wire line	$\begin{aligned} & \text { Rer. } \\ & \text { Page } \end{aligned}$	Remarks
1	Bangle	Pr.	Theatre to Thea tre 1 inks Pt, to Pt.	$5 \mathrm{kd} / \mathrm{s}$	0, T, Key frim	Eourteen 6 thys	-	Rialo trials due to start Mar. 54	25,000	both	63	Full duplex. Vocoder System
2	Sorcerer	Br.	Sent Mobile pt. to pt.	3.2 kc/s	doubie rutte	Three 6' bays	-	Develoment not yet comple te	-	both	64	Fail duplex. ditto.
3	$\begin{aligned} & \text { Arsay } \\ & \text { Dso6 } \end{aligned}$	U.S.	Semi Mobrle pt. to pt.	$\begin{aligned} & \text { Nom nay } \\ & 3.0 \text { regh } \end{aligned}$	Geared Timing Mechantis	6 wni to each $16^{\prime \prime} \times 17^{\prime \prime} \times 35^{11}$	$\begin{aligned} & 2,300 \\ & 160 \end{aligned}$	Gervice triala due to start Pob, 54	\$100,000	both	22	Pull duplex. 5 tele type or I FAX chamel could be used in lien of speech.
4	$\begin{aligned} & \text { ARSAY } \\ & \text { D809 } \end{aligned}$	U.S.	Ciphony for Sta, Telephone atroul ts	$\begin{aligned} & \text { Mominat } \\ & 3.0 \mathrm{kc} / \mathrm{s} \end{aligned}$	$59 \text { stage }$ Roken	2 drawer: file cabinet	$\begin{array}{cc} \text { sey } \\ 300 & \\ 3 \mathrm{lbe} \end{array}$	Researeh stage only	-	Wire	24.	Push to talk. ditto.
5	Trumpeter	Br.	Ractical aiphory	$25 \mathrm{kc} / \mathrm{s}$	Gipher text eutokey	$20^{\prime \prime} \times 16^{\prime \prime} \times 14^{\prime \prime}$	-	Research stage only	-	vir radto	66	Puah to talk Simplex.
6	$\begin{aligned} & \text { ARSAI } \\ & \text { DBOY } \end{aligned}$	U.S.	Low echelon jeep borm	$25 \mathrm{kc} / \mathrm{s}$	Oipher text autokey	$1 \mathrm{cm.eft}$	35 16s.	Englneering models due mid 54	A3,500	vsp radio	30	Push to tall Simplex.
7	$\begin{aligned} & \text { ARSAY } \\ & \text { DS08 } \end{aligned}$	U.S.	Airborne clphony	24. kc/s	37 stage Roken	1 cur. It.	52.165	Engineerling models demons trated. Service hifst models due end 54	\$5,000	$\begin{aligned} & \text { virs } \\ & \text { radto } \end{aligned}$	26	Push to talk Simplex. Incorporates automatio Indicator and set up feature.
8	Hallmarik	Br.	Low echelon Dactical. ciphony	$33 \mathrm{kc} / \mathrm{s}$	Platin bext but tokey	3 units each $120^{\prime \prime} \times 16^{11} \times 14^{\prime \prime}$	300 188.	Engineerling models now a vallabie	$\text { ex, } 500$	virf radio or 5 miles of quad. cable	67	Push to talk or durplex with two keyers in tanden if required for extra security.
9	$\begin{aligned} & \text { ARSAY } \\ & \text { Dsiot } \end{aligned}$	U.S.	Special ne twork telephone	$50 \mathrm{xc} / \mathrm{s}$	Clpher text artokey	$30^{\prime \prime} \times 10^{\prime \prime} \times 24^{\prime \prime}$	300 lbes	Eariy de relopment	*	Sperial wire lines	29	Push to talk Simplex. Probable use short range due to line restrictions,
10	Pickwick	Br.	Special ne tromk telephone	$15 \mathrm{~kg} / \mathrm{s}$	plain text autolky	61 bay	400 Ibss	Develophent nodels on trial	"	U.K. Musio circults	68	Tull diplex, Contains 4 level transmission systems reducing speed to 7,500 bauds.
11	$\begin{aligned} & \text { APSAY } \\ & \text { D810 } \end{aligned}$	U.S.	Medium e chelon speclal wire 1 ines	4-20 kob	Cipher text autokey	Equiralent of one 6^{\prime} bay	250 16s.	Research only. Lab. models.	-	both	27	Intended to fit into the 4 -20 ke/s portion of the carrier speatrum.
12	$\begin{aligned} & \text { ArsAy } \\ & \text { D830 } \end{aligned}$	U.S.	Airborne Privacy equipt.	$5 \mathrm{kc} / \mathrm{s}$	Repeating tine permutation in frame of 18	$21^{11} \times 1117 \times 8^{\prime \prime}$	35 lbs.	Development to be concluded early 54	18,000	VH5 radio	31	Production not contemplated, Not considered secure.
13	D70	Br.	12 ohamel mi arovave radia pelay	$\begin{aligned} & 420 \\ & \text { Kilobauds } \end{aligned}$	Tutte	Two 6\% bays	-	Tho engineering models neariy comple te	-	$\begin{aligned} & \text { Microwave } \\ & \text { D70 } \\ & \text { radio } \end{aligned}$	65	24 teletype channels can be substi tuted for one telephone chamel.
14	$\frac{\text { Afsay }}{816}$	U.S.	8 charnel miorovave radio relay	$\begin{array}{\|l\|} \hline 320 \\ \text { Kilobauds } \end{array}$	Plain text autokey	Total equipt. incl: reserve keyers 9 bays	$\begin{gathered} 2,250 \\ 16 s . \end{gathered}$	In use	-	$\begin{gathered} \text { Microvave } \\ \text { radio } \end{gathered}$	28	No production contemplated.
15	$\begin{aligned} & \text { AFSAY } \\ & \text { D807 } \end{aligned}$	U.s.	24 or 48 chanel Microweve radio relay	2.304 Megabauts	plain text autokey	7 bays	$\begin{aligned} & 1,700 \\ & 165 . \end{aligned}$	Service test models due 1955	-	Microwave radio	25	

```
SECTION A. U. S. COMMUNICATION SECURITY ERUIPMENTS
```


PART I. LITERAL CIPHER MACHINES

1. Machines Requiring No External Source of Power

a. AFSAM D17

A small keyboard-operated, tape-printing literal cipher machine designed for use where electrical power is not available. Operates pneumatically at approximately 15 to 20 words per minute, all power being supplied by the depression of the keyboard keys. Crypto-unit is a reciprocal permuting maze consisting of ten 26point rotors and a reflector. Eight of the rotors step in a single interrupted "CCM" cascade. Two of the rotors and the reflector are settable, but do not step. All rotors are identically "wired" and their order in the maze is not changed. All rotors have rotatable alphabet rings and seven of the stepping rotors have settable pinpattern rings for motion control.

Size and Weight: $8^{\prime \prime} \times 8^{\prime \prime} \times 4^{\prime \prime}$; 10 lbs.
Development Status: The first engineering model developed by a commercial contractor has been completed and will be delevered to NSA by 1 Sept. 1953.
b. AFSAM D21

The AFSAM D21 is a manually operated, tape-printing, literal cipher device using a five level one-time key tape. It is intended to replace one-time pads in some limited applications. The oase, printing mechanism, and the bar drum of the $\mathrm{M}-209$ are used; the key wheels are replaced by a tape reader. Operating speed is the same as the $\mathrm{M}-209$.

Size and Weight: $\quad 7 \frac{1}{4}^{4} \times 5 \frac{1}{2}^{\mu} \times 3 \frac{1}{2}^{n} ; \quad 5 \frac{1}{2} \mathrm{lbs}$.
Development Status: Fifteen engineering models have been constructed. They are now undergaing service tests.
c. APSAM 36

An interim keyboard operated, tape-printing, literal cipher machine for use where electrical power is not available. Operates mechanically at approximately 10 to 15 words per minute. Cryptomit consists of twelve key-wheels and associated bar drum (Hagelin mechanism),

Síze and Feight: $\quad 1^{\prime \prime} \times 10^{\prime \prime} \times 6^{\prime \prime}$; 181bs.
Production Status! 1500 models scheduled for delivery by end of December, 1953.

2. Power Driven Machines

a. AFSAM 7

A keyboard-operated, tape-printing cipher machine which encrypts literal text and numerals. Operates at speeds up to 60 words per minute. Crypto-unit consists of an eight-rotor nonreciprocal permuting maze. Rotors have 36 points and are provided with rotatable and interchangeable alphabet and notch rings. Ten points on one endplate are wired to ten points on the other. All major collifinctivs are constructed as conveniently demountable subassemblies. Operates from $115 / 230 \vee A C$ or $28 \vee D C$.

Sizs and Weight (Less carrying case and rotors): $12^{\prime \prime} x^{\wedge}$?" $\times 6 \frac{1}{2}$ "; $18 \frac{1}{4}$ 1bs.

Production Status: First models incorporating all major modifications required as a result of service test evaluations are scheduled for delivery from the production contractor in Sept. 1953. Development of an improved model of this equipment (AFSAM D7A) is underway. Major components which will be redesigned include the keyboard, base contacts, stepping unit, rotors and letters/figures shift circuit.
b. AFSAM 47

A keyboard-operated, tape-printing cipher machine which encrypts literal text, numerals and eight punctuation marks. Operates at speeds up to 60 words per minute. Cryptomuit consists of a seven-rotor non-reciprocal permuting maze and a set of adaptor plugs to provide the required rotor motion control circuits. Rotors are 26 -point, with rotatable and interchangeable alphabet and notch rings, Has provision for semi-automatic tape reader operation from associated equipment. Operates from $115 \mathrm{v} \mathrm{AC}$,115 v DC , or 28 V DC with a change of the motor unit.

8ize and Weight: $11^{\prime \prime} \times 10 \frac{1}{2}^{\prime \prime} \times 9 \frac{1}{2}^{\prime \prime} ; 43 \mathrm{lbs}$.
Development Status: Development is essentially completed. Production models scheduled for delivery in April 1954.
c. AFSAM 47B

A modified version of the AFSAM 47 for ADONIS-POLLUX
operation. Operates from 115 v AC and provides 280 volts through the rotor maze by means of a voltage doubler.

Size and Weight (approximate): $13^{\prime \prime} \times 10^{\prime \prime}$ " $\times 9^{\frac{1}{2}}{ }^{\prime \prime} ; 50 / 60$ lbs.
Development Status: Breadboard model has been constructed by the contractor and is undergoing tests. First engineering model scheduled for completion by February 1954.
a. $\operatorname{CSP} 888 / 889$

An electromechanical, keyboard-operated, tape-printing cipher machine used for off-line literal encipherment. The cryptounit, for HERCULES operation, consists of three rotor mazes; 1. the alphabet maze, a 26-point five-rotor maze for encipherment; 2 , the control maze, a 26-point five-rotor maze for motion control of the alphabet maze; and 3. the index maze, a 10-point five-rotor maze used to transpose the output of the control maze, With approm priate adapter may also be used for LUCIFER.

Size and Weight: $\quad 143 / 4^{n} \times 19^{\prime \prime} \times 12 \frac{1^{n}}{}{ }^{n}: 97 \mathrm{lbs}$.
Production Status: In use.

e. AFSAM $25 B / C$

An electromechanical, keyboard-operated, tape-printing cipher machine used for off-line literal encipherment. The cryptounit consists of a 26 -point five-rotor non-reciprocal permuting maze.

Size and Weight: $\quad 143 / 4^{\prime \prime} \times 19^{\prime \prime} \times 12^{\frac{1}{4} "} ; 97$ lbs.
Production Status: In use.
f. AFSAZ 7301

This special mechanism may be used with CSP 889, AFSAM $25 B / C$, or AFSAM 47. The principal function is automatic decipherment of cipher tapes. No modification of the cipher machines or operating instructions is required. May be used for enciphering, but only if very strict procedures are observed.

Size and Weight (packed for shipping):
$203 / 8^{\prime \prime} \times 14^{1 / 8^{\prime \prime} \times 153 / 4^{\prime \prime} ; \quad 59 \frac{1}{2}} \mathrm{lbs}$.
Production Status: In use at major stations.

PART II. TETEPPRINTER SECURITY EQUIPMENTS

3. Non-Synchronous with Electro-Mechanical Crypto-Components

a. AFSAM 9

A non-synchronous teletype security equipment designed
for forward area use. Accepts 32 characters from remote teleprinters. Cryptomunit (AFSAM 109/209) is a non-reciprocal permuting maze with nine 36-point rotors. Uses 5-32-5 crystal diode translators. Rotors are identical with those used in the AFSAM 7. May also be used with AFSAM 309 tape reader in lieu of rotor maze for $0 . T$. Key; provided with tape slitter and torn tape interlock.

Size and Weight: $\quad 15^{\prime \prime} \times 16^{\prime \prime} \times 7 \frac{1}{2}{ }^{\prime \prime} ; 46$ Ibs.
Development Status: Released for production 1 April 1953. First production models expected by Sept. 1954. Development continuing on some modifications to prevent spurious plain-text radiations.

Radiation: In its prosent form equipment is inherently insecure due to spurious radiation of plain-text. Development is continuing on some modifications to prevent plain-text radiations.

b. ASAM 2-1

A modification of converter M-228 (SIGCIM), A five-rotor maze produces five levels of key which is added baud by baud to the plain text output of a teletypewriter or transmitter distributor. Eight different motion control plans, governed by multiswitches, provide eight different keys for each arrangement. Key is used on a one-time basis. Cryptoperiod is twelve hours. There is a variety of operating procedures including simplex use.

Size and Weight: $\quad 187 / 8^{\prime \prime} \times 141 / 4^{\prime \prime} \times 111 / 8^{\prime \prime} ; 73 \frac{1}{2}$ lbs
Production Status: In use.
Radiation: Equipment is inherently insecure due to radiation of plain text signals from associated equipment. If adapted for electronic Keying it is considered that it would probably be secure.

c. AFSAM 4 A (SIGNIN)

A combined teletypewriter and cipher machine. An eightrotor maze produces five levels of key which are added baud by baud to the plaintext to accomplish encryption. May be oferated on-line or off-line. Unit is mounted in a specially designed three-combination safe. For PANDORA operation, impulses travel through maze from left to right to produce five elements of key simultaneously. Rotor 1 is fast and controls Rotor 2; Rotor 2 controls Rotor 3; Rotor 3 controls Rotor 4; a mixed-wired stator is located between Rotors 4 and 5; Rotor 5 is fast; Rotor 6 is controlled by Rotor 7; Rotor 7 is controlled by Rotor 8; Rotor 8 is fast. For BALDER operation, impulses travel through maze from right to left and are reflected back to the right end-plate to produce the five levels of key. Rotors 1, 2, 3, 4, 6, 7, and 8 move as in PANDORA; Rotor 5 is a "bump" rotor, controlled from one of the end-plate contact positions; a mixed-wired stator is l.ocated between Rotors 4 and 5.

Size and Weight: $\quad 22 \frac{1}{2}^{*} \times 253 / 8^{\prime \prime} \times 17^{\prime \prime} ; 252 \mathrm{lbs}$.
Production Status: Approximately 450 machines have been produced.

Radiation: Extent of spurious radiations from this equipment has not been determined.
d. APSAM 44

A one-time tape teletype security equipment designed to transmit on-line and receive off-line. Tape operated only. Has two sensing heads, one for the message tape and one for the key tape. Very rugged and compact. Operates from 115 volts A.C. or 28 volts D. C, power.

Size and Weight (approximate): $0.5 \mathrm{cu} . \mathrm{ft} . ; 20 \mathrm{lbs}$.
Development Status: Final engineering model being redesigned by contractor to incorporate certain changes, including a Torn-tape interlock and Tape slitter, requested as a result of NSA and Service evaluation of a previous model. No production currently planned.

Radiation: No radiation inherent in the AFSAM 44; dependent on terminal equipment used.
e. AFSAM 45

A one-time tape teletype security equipment designed for use with a printer or transmitter - distributor. Has one sensing head (for key tape) and one selector mechanism; operates at speeds up to one-hundred words perminute. Very rugged and compact. Operates from 115 volts A.C. or 28 volts D. C; power.

Size and Weight (approximate): 0.5 cu. ft.; 20 lbs.
Development Status: Final engineering model heing redèsigned
by contractor to incorporate certain changes, including
a Torn-Tape interlock and tape slitter, requested as a result of NSA and Service evaluation of a previous model. No production currently planned.

Radiation: Same as AFSAM 44.

5. Synchronous With Electro-Mechanical Crypto-Components

a. AFSAZ D7315 (formerly AFSAM 15)

A single channel synchronous equipment designed for 24hour operation at speeds of $60-100$ words per minute. Traffic is accepted from a tape reader only (32 characters). Traffic flow security is provided by automatic insertion of random text between messages. This is supressed at the receiving terminal. Automatic message numbering is included in the equipment. Normal operation is the IRIS crypto principle i.e. with an AFSAM 9 and AFSAM 409 rotor stepping unit (minimum cycle 36^{4}). It may also be used on AENEAS crypto principle i.e. with AFSAM 9 and AFSAM 309 one time tape unit.

Size and Weight; Two units each $19^{\prime \prime} \times 20^{\prime \prime} \times 15 \frac{1}{2}^{\prime \prime}$, one unit $14 \frac{1}{4}^{\prime \prime} \times 9^{\frac{1}{2}} \times 7$ "; total weight 221 lbs.

Development Status; Development has been completed. Eighteen service test models are being constructed and are scheduled for delivery in June 1954.

Radiation: Same as AFSAM 9.
b. AFSAZ D7305

A short term message synchronizer for use with the AFSAM 9 and similar teletype security equipments, Will maintain synchrony during transmission fades up to 10 seconds duration. Designed for use at the receive terminal only and requires a constant speed transmitted signal.

Size and Weight (estimated): $1 \mathrm{cu} . \mathrm{ft}_{\mathrm{t}} ; 20 \mathrm{Ibs}$.
Development Status: First engineering model developed under contract scheduled for delivery by April 1954.

Radiation: Not applicable.

SSM 3

A non-synchronous teletypewriter mixer designed for operation on Wire circuits for eithor on-line or off-line operation. For full duplex on-line operation two units are required at each end of a full duplex circuit. For half-duplex non-reversible on-line or off-line operation one terminal at each end of a half duplex circuit is needed. Operates from 115 volts A.C. is source of 110 V D.C. power is required for line current. Developed by the U.S. Air Force Security Service. Torks with the ASAM 2-1, dFSAM-9 and One-time tape.

Size and Wieight (estimated): $8^{\prime \prime} \times 10^{\prime \prime} \times 15 "$; 1C Ibs.
Production Status: Froduction models in use; no further procurement planned by USAF in view of contracts let for the SSM-33, (two SSM-3's on one chassis).

Rediation: The equipment causes sone radiation and at present it is assuned that security is compromised. Remedial measures are being taken to eliminate security hazards.

SSM 33

A non-synchronous teletypewriter mixer designed for full duplex operation in wire circuits for either on-line or off-line operation. Essentially this equipment consists of two SSMi-3's on one chassis with power supply.

Size and Weight (estimated): $9^{\prime \prime} \times 201 \times 13^{\prime \prime} ; 30$ Ibs.
Production Status: Contract let for 500 units.
Radiation: Consideration has been given in specifications to reduce radiation. T'ests will be performea on first production models when received approximately February 1954.
d. SSM 4 (SAMSON)

Full duplex synchronizing apparatus designed for use with the ASAM 2-1, AFSAM 9 and similar teletype security equipments. Uses a tuning fork as a frequency standard and will maintain synchrony during transmission fades up to approximately 30 minutes duration, Developed by U. S, Air Force Security Service.

Size and Weight (approximate): $19^{\prime \prime} \times 18^{\prime \prime} \times 12^{\prime \prime} ; 130$ lbs.
Production Status: Now in production and use.
Radiation: Same as SSM 3.

6. Synichronous with Electronic Crypto-Components

a. AFSAM D22

Electronic key generator designed for use with the AN/FGG -5 Electronic Multiplex Equipment. Bnciphers the output of the AN/FGC-5, which accepts 32 characters from remote teleprinters. Capable of two, three or four channel operation. Provides traffic flow security. Crypto-unit, which has been recently changed, supplies an additive binary key derived from a 53-stage Koken and associated combining circuits. Crypto-period set-up will be made from a Remington Rand (or possibly IBM) card. Size and Weight 2 units, each 4' $\times 2^{\prime} \times 2^{\prime}$; total weight 500 lbs .

Development Status: Development model has been completed and tested. An 18-month contract was awarded in May 1953, for the completion of a design approval model by February 1954, and pre-production model by November 1954.

Radiation: Extent of radiation has not been determined.
b. APSAM D26

Single channel synchronous equipment; accepts 31 characters (excluding blanks) from remote teleprinter. Operates at 60 or 100 words per minute and provides traffic flow security. Crypto-component supplies an additive binary key derived from a 53 stage Koken and associated combining circuits and includes means to prevent the reading of messages in depth. Crypto-period set-up will be made from a Remington Rand (or possibly an IBM) card.

Size and Weight: One 6' x 19" rack.
Development, Status; One engineering model of the transmit terminal is almost complete and construction of the receive terminal is underway locally.

Radiation: Extent of radiation has not been determined.

c. APSAM D37

A proposed security equipment for broadcast teletype service which will include a crypto-component and synchronizing and transmission circuitry necessary for the output of any standard teletype device. A single transmitter will broadoast to a number of reoeive-only units. Means will be provided whereby receivers can be semi-automatically phased in to decipher the transmitted signals in case crypto-synchronism is lost or the receiver has started late. Crypto-components will be similar to the crypto-component of the AFSAM D26.

Size and Weight (estimated): Transmitter - one $6^{\prime} \times 19^{\text {m }}$ rack. Receiver - one $4^{\prime} \times 19^{n}$ rack.

Development Status: Project in the initial design stage; breadboard construction will start within a year.

Radiation: Unknown.

PART III. SPEECH SEOURITY EQUIFMGNTIS

8. Vocoder Systems
a. AFSAY D806

Single channel full duplex speech security system for use over land line or long distance HF radio. Requires one 3 kc transmission channel. Alternatively it can provide five teletype channels or one facsimile channel. Uses a 9-channel vocoder (8 spectrum and 1 pitch); quantizes the speech into 8 levels and the pitch into 64 levels, 20 millisecond sampling in each channel. The 500 PAM pulses are time multiplexed and coded by an 8 level binary coder resulting in 1500 bauds per second. Oryptorcomponent is the geared timing mechanism, A "Key Selector" (formerly "Station Selector") switch provides one of four affferent key streams for net operation. Tube complement approximately 650,

Slze and Weighti $\quad 6$ units, each $26^{\prime \prime} \times 17^{\prime \prime} \times 33 \frac{12^{\prime \prime}}{}$; total weight, 2300 lbs .

Development Statusi Three terminals from previous contractor on hand. First engineering model of the improved version was delivered in August 1953. Remaining six engineering models will be delivered by November 1953. Four of the engineering models will undergo wire line tests by the Services for six months starting January 1954. Two of the three models on hand from the previous contractor will be radio tested by a contractor on a link between Hawaii and Long Island.

b. AFSAZ D7300

One way regenerative repeater for the AFSAY D806.
Sise and Weight: 2 units, each $26^{\prime \prime} \times 17^{\prime \prime} \times 33 \frac{1}{2}$ "'; total weight 760 Ibs.

Development Status: Contract was awarded in April 1953, calling for the delivery of four engineering models by July 1954.

c. AFSAY D809

Single channel push-to-talk speech security system for general use over wire lines, Currently it is thought that a 16 channel vocoder (14 spectrum and 2 pitch) will be used. Baud rate; 1650 bits per second. Crypto-component will be a 59 stage Koken device with automatic indicator for each message. Tube complement: approximately 450 transistors and 1500 diodes drawing approximately 5 watts.

Size (estimated): Two-drawer file cabinet.
Development Status; An anticipated contract calls for 6 fully transistorized engineering models to be delivered in 2 years from the award date for testing.

9. Pulse Code Modulation Systems

a. APSAY D807

Forty-eight channel, full duplex, microwave radio relay speech security equipment employing 8 kc sampling and 64 level PCM description. Total baud rate: 2.304 megacycles. Crypto-component is a keyer similar to that used in the AFSAY 816. A proposed modification would reduce the equipment to 24 secure voice channels, full duplex, giving 100% spare in the AN/TCC-15 (multiplex set) and 33% spare in the AN/TSA-5 (keyer) while providing 100% check on the key. Baud rate of the modification would be 1.15 mg.

Size and Weight (estimated): 7 bays; 1700 Ibs.
Development, Status: A contract for the AN/TSA-5 was awarded in November 1952. Two of the equipments will be delivered to NSA for tests. A contract was awarded in February 1953 for development models of the AN/TCC-15 to be delivered in Jume 1953.

b. AFSAY D808

A low echelon push-to-talk airborne speech security equipment employing 6 kc sampling and 16 level PCM description. Crypto-component is a 37 -stage Koken keyer with automatic message indicator. Tube complement: 449 sub-miniature.

Size and Weight: PCM and cryptomit $10^{\prime \prime} \mathbf{1}^{\prime \prime} \times 8^{\prime \prime} \times 23^{\prime \prime}$; code changer $8^{\prime \prime} \times 10^{\prime \prime \prime} \times 4^{\prime \prime}$; control box $5 \frac{1}{4}{ }^{\prime \prime} \times 7^{\prime \prime} \times 33 / 4^{\prime \prime}$; Total weight 52.1 lbs.

Development Statusi Four design approval models have been built and have undergone preliminary flight tests. Six additional units are to be delivered by December 1953. A new 18 -month contract was awarded in June 1953 calling for the construction of 10 engineering models with emphasis placed on improving transmission reliability.

c. AFSAY D810

Single channel speech security equipments. Transmission bandwidth requires a normal 4-channel wire and/or radio facility such as spiral-4 cables and/or $\operatorname{AN} / T R C-1,8,24,31$ and $A N / G R C-10$. . Speoch Sampling occurs at 3.5 kilocycle rate followed by 16 -level Pulse coding. The 4 -digit pulse code occurring at 14000 bits per second is converted to a 2-digit quaternary code occurring at 7000 pulses per second. These are used to modulate a 14 kilo oycle carrier with the output bandwidth limited to the range 4.20 kc . by a gaussian output filter. Crypto-component will be a delay line keyer similar to that used in the AFSAY D801.

Size and weight (estimated): 1 standard 19" rack: 250 Ibs.
Development Status: Coles Signal Laboratories has a breadboard model of the PCM and transmission circuitry. An anticipated contract (controlled by Signal Corps) calls for experimental models to be delivered one year after the award date. NSA will provide contract liaison on keyer portions of the equipment.
d. ATSAY 816

Eight channel full duplex microwave radio relay speech security equipment employing 8 kc sampling and 32 level POM desm cription. Total baud rate is 320 kc . The crypto-component using auto-key techniques supplies an additive binary key derived from irregularly stepping electronic rings. Tube complement approximately 600.

Size and Weight: $\quad 9$ bays; 2,250 lbs, includes 100% standby equipment.

Development Status; Two terminals using laboratory models have been in operation 8 hours a day with 2% outage, Plans to construct two additional laboratory models have been dropped.
10. Delta Modulation Systems
a. AFSAY D801

Single channel self-synchronous push-to-talk speech
security equipment for use as an intercommunication system over short wire links of excellent frequency response. Employs delta modulation coder operating at 50 kc . Low level noise is added to the speech input. Crypto-component is a cipher text auto-keyer using three shift registers in tandem.

Size and Weight: Purchase description requires that equipment be "of desk height (approximately thirty and one-half ($30 \frac{1}{2}$ inches), no wider than ten (10) inches, and less than twenty-four (24) inches in depth"; "weight of the equipment shall be the minimum practicable, and in no event shall exceed three hundred (300) pounds".

Development Status: An 18-month contract was awarded in April 1953, calling for the delivery of a maximum of 8 final models in the latter part of 1954. No other construction is planned.
b. AFSAY D8O4

A low echelon, single channel, self-synchronous, push+ to-talk speech security equipment. Speech is sampled at a 25 kc rate and converted to a binary signal by a delta modulation process. Crypto-component is a cipher text auto-keyer employing a 40 baud shift register. Tube complement approximately 90 miniature.
Size and Weight $\quad 1$ cubic foot; 35 lbs.
gevelopment StatuB:. Two laboratory models of the AFSAY D804 $(X-1)$, (40 baud delay line, no alarms) were construeted locally and shipped to the contractor who will construct a maximum of eight AFSAY D804 (X-3) models, (40 baua delay line, no alarms, 24 volt vehicular operation, 60 tubes). These will be delivered by June 1954. A contractor has delivered four models of the AFSAY D804 (X-2) (40 baud delay line with option of two random walk rings, no alarms). One laboratory model of the AFSAY D804 (X-4) has been constructed and shipped to the contractor. The ($X-4$) model has lumped constant delay lines, two random walk rings and alarms. The contractor, will build six engineering models with delivery scheđuled for November 1953. Future production plans will depend upon Service reception of the equipment.
11. Non-digital Systems
a. AFSAY 830 .

Single channel, push-to-talk airborne speech privacy equipment. The speech signal is limited to the $480-2200 \mathrm{cps}$ band, amplitude sampled 5,040 times per second, stored and permuted within a frame of 12. A second model provides a permatation within a frame of 18.

Size and Weight (12-element model): $21^{\prime \prime} \times 10 \frac{1_{2}^{\prime \prime}}{} \times 8^{\prime \prime} ; 35$ lbs.
Development Status: Expected delivery date of the 18-element models has been changed to late 1953. NSA will receive two models for analysis.

PART IV. FACSIMIIE SEOURITY EQUIPMENTS
12.
a. AFSAJ 700 (formerly AFSAX 500)

An electronic key generator originally designed for the encryption of facsimile transmissions with AN/UXC-2 from fixed plant and shipboard installations. Altematively the AFSAJ 700 may be used in conjunction with the ancillary equipment AN/FGC-5 to encipher up to four standard teletype channels or with the ancillary equipment AN/FGC-14 to encipher up to eight standard teletype channels. Operates at 1000 bauds per second. Crypto-component supplies an additive binary key derived from a key generator containing eight electronic keyer rings.

Size and Weight (estimated): 3 bays; total weight 2500 lbs.
Development Status: Eighteen models of the key generator have been completed. They will shortly undergo service tests on a Washington, D.C. - San Francisco link. A test terminal will require three key generators as follows: one keyer for transmission, one keyer to check the transmit keyer and one keyer for reception, on each of the three equipments AN/UXC-2, AN/FGC-5 and AN/FGC-14. Current contract provides for delivery of total of 102 equipments for US use by end of 1954 at rate of eight a month.

b. AFSAX D503

A facsimile security equipment designed for the encryption and transmission of black and white copy over land-line and VHF radio links. Together with ancillary transmission equipment, the AFSAX D503 will provide secure facsimile communications over HF radio. Operates at rates between 500 and 12,000 bauds per second. Grypto-component supplies an additive binary key from a 59 stage Koken equipped with automatic message indicator. The key failure alarm has been changed to increase its effectiveness, Check is made for failure of either partial key, A1 and B4 outputs (see Figure 1, BRUSA C/S 203), failure of special point deletion, B6, or failure of the final key addition, A2. Failure of partial key is checked by requiring at least two changes within a frame of 64 elements. Failure of special point deletion or final key addition or both is checked by circuits similar to the Cipher Failure alarm. Included also are an alarm and gate to insure that the output is removed in the event of an alarm,

Size and Weight: $\quad 20^{\prime \prime} \times 30^{\prime \prime} \times 60^{\prime \prime} ; 475 \mathrm{lbs}$.
Devei.opment Status: Two laboratory models are currently in use by a non-Service organization. Two design approval models are ready for evaluation at the contractor's site. Six additional engineering models are expected by October 1953. Sub-miniature requirement has been deleted.

c. AFSAX D505

A facsimile security equipment designed for the encryption and transmission of black and white copy over long distance wire lines or HF radio. A single fixed plant cifax transmitter (AFSAX D505/1) will broadcast to a number of cifax receivers (AFSAX D505/2). The AFSAX D505/1 consists of three independent crypto-components with automatic alarms and three cipher combining circuits. Automatic switchout of defective contribution is accomplished without loss of transmission. The AFSAX D505/2 consists of one cryptocomponent and simple alarm circuitry. Baud rate is approximately 1000 bits per second. Crypto-component supplies an additive binary key from a 37 stage Koken device.

Size and Weight (estimated): AFSAX D505/1 - two 5 foot racks; AFSAX D505/2 - one 4 foot rack.

Development Statua: Request for bids has been issued. Initial contract calls for one engineering model of the AFSAX D505/1 and two engineering models of the AFSAX D505/2. It is anticipated that a second contract will be awarded in 1955 calling for pre-production models which will undergo service tests.

d. AFSAZ D7306

Cifax wire transceiver equipment being developed to traasmit 1650 bits per second over any toll line. Project is being engineered locally from Bell Telephone Laboratories' (Mr. A. C. Norwine) experimental circuitry. Engineering models being constructed have optional transmission rate of 1800 bits per second. Size and Weight (estimated): 1 drawer; 35 Ibs.

Development Status: Original schedule called for engineering models by 1 October 1953, but testing has been delayed because of the inability to obtain common carrier facilm ities.
e. AFSAZ D7308 - Halftone Cifax Adaptor

A 2^{n} level quantizer which converts half-tone copy into digital form, the information rate being dependent upon the facsimile speeds and the degree of coding necessary to sufficiently describe representative copy. Equipment will be used with the AFSAX D503 security equipment and the AF'GAZ D7300 transmission equipment.

Size and Weight (estimated): 3 drawers: 100 lbs.
Development Status: Preliminary evaluation of applied research to determine the amount of information required to sufficiently describe representative copy is expected by 1 October 1953. Two laboratory models will be available for Service evaluation by 1 January 1954. After final evaluation of copy requirements and laboratory equipments, a contract will be awarded for prototype models.

14. One-time Tape Production Equipments
a. AFSAW 7200

This equipment consists of a random key generator, associated electronic circuits and five tape punches, Each punch unit punches 2 identical tapes. Each punch will operate randomly with respect to each of the other punches or 2 to 5 punches may punch identical tapes. Operating speed is 900 characters per minute.

Size and Weight: $\quad 4^{\prime} \times 3^{\prime} \times 3 \frac{1}{2}$ '; 750 Ibs.
Production Status: A number of these machines are currently in use producing one time key-tapes.
b. AFSAM D7224

This equipment consists of a random key generator and associated electronic circuits, a set of 5 punches and tape checking means. Each punch produces 2 identical tapes. Each punch may operate randomly with respect to each of the other punches or 2 to 5 punches may punch identical tapes. The equipment will operate at 3600 characters per minute. The equipment will be used to generate 100,000 character rolls of key tape.

Size and Weighti The size and weight have not been determined; however, they should compare favorably with the AFSAKH 7200.

Development Statusi Experimental work has been initiated. Development will be accomplished on contract.

15. One-time Key Tape Checking Equipment

a. AFSAT D7213 (DONNA)

A high speed electronic tape checking equipment consisting of three parts: (1) a photelectric tape reader, (2) an electronic decade counting unit and (3) a relay motor control unit. The photoelectric tape reader is designed to accomodate either 10,000 or 100,000 character tapes; three or four tape readers ane supplied with each counter unit. The electronic counter discriminates, compares and counts the pulses from the tape reader and gives a visual indication of a good or bad tape together with the actuel numerical count. The relay motor control unit selects an available tape reader and controls the speed, stopping and reversing of the motors during a run. Twenty different counts are made on each tape.

Size and Weight: Tape reader: $20^{\prime \prime} \times 1^{\prime \prime} \times 13^{\prime \prime}$; approximately 60 lbs. Counter: two standard $19^{\prime \prime}$ cabinet racks 7^{\prime} high and one $24^{\prime \prime}$ cabinet rack $7^{\prime \prime}$ high; approximately 1500 lbs.

Production Status: One machine completed and in operation. Five additional machines being constructed.

16. Letter Check Generating Equipment:

a. AFSAF 7203 (LFEECH)

A relay-operated machine for automatically generating
36-45 letter checks for POLLUX/ADONIS (AFSAM 7) and ATHENA/ PYGMALION/IRIS (AFSAM 9/AFSAZ D7315) crypto systems. In conjunction with associated IBM equipment, the AFSAW 7203 reads previously prepared IBM cards on which key list information, including rotor order, notch and alphabet ring alignments, has been punched; sets up the various crypto-components accordingly with the rotors aligned at "AAA...A", steps them 35 positions in accordance with the applicable rule of metion; and then punches in the original IBM card ten successive encipherments of the letter "L" for POLLUX/ ADONIS (or ten successive decipherments of the "LETTERS" character for ATHENA/PYGMALION/IRIS) as the rotors step from position 36 through position 45. The IBM cards are then used for the preparation of printed key lists. Entire operation takes approximately four seconds.

Size (approximate): 150 cu . ft.
Production Status: One locally constructed equipment now in operation.
b. AFSAW D7221 (MOOSE)

A relay operated machine which generates letter check groups for MARS (AFSAM 36) and OLYMPUS (M-209) crypto-systems. The machine transposes the columns of lug settings on a previously prepared master card and punches the transposed columns onto a key list card (IBM type) containing previously prepared pin settings. The lug and pin settings from the key list card are used to generate a letter check which is printed on the same card.

Size and Weight: $\quad 7^{\prime} \times 4^{\frac{1}{2}}{ }^{\prime} \times 5^{\prime}$; approximate 2000 lbs.
Development Status: One locally constructed model is in final

Security Status: Not applicable.
BRUSA C/S References:
U. S. Papers: None
U. K. Papers: None.

17. Automatic Rotor Wiring Equipment

a. AFSAW D7215

The automatic rotor wiring equipment consists of three machines related to each other in a manner to permit automatic transfer of the rotor bobbin from one machine to the other during processing. The first machine wires the bobbin in accordance with a particular system, seals the wires in the bobbin and cuts the wires to length. The second machine strips the insulation from the tips of the wires and tins them. The third machine inserts the bobbin in the rotor and solders the wires to the proper lugs.

Size and Weight (estimated): Wiring machine-11' $\times 2^{\prime} \times 6^{\prime}$; 1300 lbs . Stripping and tinning machine $-5^{\prime} \times 3^{\prime} \times 4^{\prime}$; 800 libs. Assembling and soldering machine - $4^{\prime} \times 2^{\prime} \times 4^{\mathrm{y}}$; 500 lbs .

Development Status: The wiring machine is nearly completed. The stripping and tinning machine is being detailed. The assembling and soldering machine is in the design stage.

PART VI. SPECIAL PURPOSE CRYPTO-EQUIPMENIS

18.

a. AFSAM 499 (Authentication Device)

A small, manually operated, mechanical device for
station and message authentication. Consists of two individually rotetable shafts, each carrying 13 mixed alphabet disks and two sleeves. The nleeves form a movable grill with slots for reading the letters on the disk beneath. Provides for a two letter ohallonge and a two-lotter reply.

S18e and Weight: $5 \frac{1}{2}{ }^{\prime \prime} \times 3^{\frac{1}{2}} \times 13 / 4^{\prime \prime} ; 2 \frac{1}{2}$ lbs.
Produotion Status: Tooling has been oompleted and most of the oomponents for the initial produotion run of 2100 models, scheduled for delivery in September 1953, are ready for assembly.

mop - HEREPT gegtryty information

b. AFSAM 498 (Authentication Device)

A small, manually operated, pneumatic device for station and message authentication. Consists of ten 15 -point rotors with rotatable alphabet rings, a reversing rotor with points banded in five sets of three each, a single input bellows, and fourteen output bellows. These components are contained in a small metal case. Provides a five letter challenge (set-up on the rotors, which are movable in separate pairs) and a two-letter reply (displayed by the activation of two of the output bellows).

Size and Weight (approximate): $4^{\frac{1}{2} "} \times 33 / 4^{\prime \prime} \times 2^{\prime \prime}$; $1 \frac{1}{4}$ lbs.
Development Status: One development model has been constructed locally. Mechanical components and cases for five improved devel opment models are being fabricated locally, and five sets of glass pneumatic rotors are to be supplied by a commerial contractor. After these models have been evaluated, a contract for further development of this device will be negotiated.
c. AgSAM D31 (Weather Cipher Device)

The AFSAK D31 is a manually operated, tape printing, cipher device using a five level one-time key tape, intended for use as a cipher device to encrypt digital weather information. The case and the bar drum of the $\mathbf{x}-209$ are used. The key wheels are replaced by a tape reader. The printing mechanism is modified so that the plain text oharacters are the ten digits, " $\mathrm{X}^{\prime \prime}$, "/" and "Space". The cipher characters are the 26 letters of the alphabet, Operating speed is the same as the $\mathbb{M}-209$.

Development Status: One complete machine has been constructed. Two typewheel assemblies have been constructed for conversion of AFSAM D21 to AFSAM D31.

TOP-SECRET

Page 46

SECTION $\mathrm{B}_{\text {. }}$

U.K. CRYPTOGRAPHIC EQUI PMENTS

PART I. LITERAL CYPHER MACHINES.

1. Machines requiring no external source of power.
(a) PORTEX.

A small hand operated off-line tape printing cypher machine with an electrical permuting maze designed for low echelon use. Electrical power to operate the maze is derived from a self-contained 45 -volt dry battery good for over 100,000 operations. Speed $10 \mathrm{w} . \mathrm{p} . \mathrm{m}$. The cryptographic unit consists of an eight 26-point rotor maze with a crossover at the cypher end; the rotors step in two four-rotor cyclometric cascades. Each rotor consists of an insert and a housing; the insert is selected from a set of sixteen and can be fitted in the housing in any one of the twenty-six possible angular positions, the housing is fitted with a rotatable alphabet tyre.

Size of machine:	$12 \frac{1}{2 \prime \prime} \times 6 \frac{11}{2 \prime \prime} \times 7^{\prime \prime}$, + accessories $9^{\prime \prime} \times 7 \frac{11}{\prime \prime} \times 4^{\prime \prime}$.
	Total weight 34 Ibs.
Production State:	No orders will be placed until after complètion.
	of user trials in September 1953. Production would
	start eighteen months after placing of firm order.
	Probable order is estimated at 2000 and the cost
	between £100 and ¢250 each.
Radiation:	No detailed investigation has been made but it
	is considered to be secure particularly for the
	purpose in view.

844

TOP SECRET

Page 47

2. Power driven Literal Cypher Machines.

(a) TYPEX 2.

A power driven keyboard operated tape printing cypher machine with a five 26 -point rotor reciprocal permuting maze with a pluggable reflector. Rotors consist of a housing with a rotatable notch ring and alphabet tyre into which can be fitted reversible wired inserts selected from a set of fourteen. Only three rotors turn during the encryption of a message. The cryptogram is arranged in groups of five letters, a check printer is provided.

Size and Weight (in transit case): $3^{\prime} \times 2^{\prime} \times 1^{\prime \prime} 3^{\prime \prime}: 150$ Ibs.
Production State: No more of these machines will be manufactured.

844

Page 48.

(b) TYPRX 22.

The general purpose U. K. cypher machine: similar to the Typox 2 except that all rotors turn during the encryption of a message and a pluggable crossover is provided at the entry (and exit) to the maze.

Radiation: No detriled investigation has been made but it is considered to be secure.
(c) TYPEX 23.

As for Typex 22 but adapted for C.C.M.

844

TOP SECRET

Page 49

(c) PORIEX IIA.

A keyboard operated motor driven version of the PORTEX I. Operating speed 130 characters per minute.

Status: One development model constructed. Adoption of the machine depends upon policy for the adoption of PORTEX I.

Radiation: No detailed investigation has been made but it is considered to be secure particularly for the purpose in view.

844

TOP SECRET

Page 50

(d) SINGLET

A keyboard operated motor driven tape printing cypher machine having a ten 36-point rotor non-reciprocal permuting maze using re-entry technique with a pluggable crossover at the cypher end. The keyboard will provide for the encryption of the full combined teleprinter alphabet as laid down in sCP 126 plus the punctuation marks, comma, colon, question mark, quote mark. In addition, the letters J and Z will be recovered in the upper case and facilities will be provided for encrypting carriage return and line feed. The cryptogram will consist of letters arranged in groups of five; a check printer will be provided. Inter-operation with AFSAM 7 and PENDRAGON will be possible.

Estimated size and weight: $\quad 2 \frac{1}{2} \mathrm{cu} . \mathrm{ft} .75 \mathrm{lbs}$.
Status: A model to comply with the latest specification (agreed in April 1953) due for demonstration March 1954.

Radiation: Has yet to be investigated.
(e) PENDRAGON

Higher echelon variant of SINGLET. Operates automatically from tape input and designed for use with both one-wire and five-wire page printers and other teleprinter ancillary equipments. Will interwork with SINGLIM and AFSAM 7.

Estimated size and weight: $3 \mathrm{cu} \mathrm{ft}^{\mathrm{ft}} 100$ lbs.
Status: A model to comply with latest specification (agreed in
April 1953) due for demonstration June 1954.
Radiation: Has yet to be investigated.

Page 52
(f) ROCKEX

An off-line teleprinter cyphering equipment using a six unit one-time key tape. Accepts 31 characters and by means of an electronic stunt suppression unit produces an all-letter cryptngram in five letter groups, ten groups to the line and five lines to a paragraph. A new unencyphered sequential indicator is used at the beginning of each paragraph. Operates at either Creed or Teletype speed. 5-wire and electronic versions have been produced for use where there is a danger of interception of radiated plain text signals.

Status: In use. Out of production.
Radiation: It is considered by the U. K . that the 5 -wire (Rockex 4) and the electronic (Rockex 3.) versions are secure.

Previous models are inherently insecure and security is compromised by radiation.

TOP SECRET

Page 53

PhRT: II. TELEPRINIER SECURITY EQUIPMENTS.
3. Non-Synchronous with Electro-mechanical Crypto-Components.
(a) MINSTER.

Interim equipment for on-Iine non-synchrorous (start-stop) point to point usage over wire circuits. Half-duplex operation. Crypto-component is a rotor maze generating additive key using six 31 -point double rotors. Maze steps at alternate encypherments.

Estimated Size and Weight: $2^{\prime} \times 2^{\prime} \times 3^{\prime} 150$ ibs.
Development Status: Development complete. Placing of contracts awaits clarification of user requirements.

Fadiation: The equipment is inherently insecure and it must be assumed that security is comrromised by radiation. Remedial measures would involve re-design.

Page 54
(b) METROPOLE.
in on-line non-synchronous (start-stop) cypher machine. Intended for switched wire circuits on a half-duplex basis,

Differs from Minster in that the crypto system would be permuting, but the details have not yet been defined.

Estimated Size and Weight: Jipprox same as Minster.
Development Status: 2 laboratory models using six 31 point rotors have been produced.

Rediation: The equipment is inherently insecure and it must be assumed that security is compromised by radiation. Remedial measures would involve re-design.

844

TOP SECRET

Page 55

(c) MERCURY (Non-synchronous).

An on-line non-synchronous (start-stop) cypher machine. For use on switched wire or point-to-joint land circuits on a half-duplex basis. Uses similar scrambler to synchronous MERCURY i.e. 31 point double rotors and a rotor controlled message maze motion.

Size and Weight: $\quad 2^{\prime} \times 2^{\prime} \times 3^{\prime}$ approx 200 lbs.
Status: Used by Air Ministry on land line links between Europe and U. K.

Radiation: The equipment is inherently insecure and it must be assumed that security is compromised by radiation. Remedial measures would involve re-design

TOP SECRET

Page 56
4. Non-Synchronous with Electronic Crypto-Component.
(a) PHILOMEL (modified ROLUICK).

Non-synchronous equipment using subtractor (additive) key derived from an electronic key generator (single TUTTE) employing multi-cold-cathode tubes. Long term (maximum daily) cypher setting is changed by means of plugs and counter settings: a character counter device is fitted to enable operators to regain synchronism on the original key cycle following temporary loss due to line faults and operator errors between plug changes. This new method of resetting replaces the random generator setting. To limit the dangers of insecure radiation the equipment is arranged to be capable of control by electronic-keying methods. Philomel can be remotely controlled from the teleprinter position.

Size ard Weight: $4^{\prime} 6^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime} \quad 250$ lbs.
Development Status: Contract for 115 equipments placed and aue for completion May 1954. The first 50/60 will require retrospective action to incorporate the character counter and electronic keying modifications to change them from Rollick to Philomel.

Radiation: The equipment is inherently insecure in its normal form but can be readily adapted for electronic-keying in which case it is considered that it probably would be secure.

TOP SECRET
(b) CONVERTOR NO, 5 (See Page 61).
5. Synchronous Equipment with Electro-Mechanical Cryoto-Component.
(a) CIRCUIT MERCIRY.

Single channel Juplex, synchronous equiment orerating at rates of 45 or 50 bauds. iccejits 31 characters (excluding blanks) from remote telem printers. Does not, but could, provide traffic flow security. Crypto-component consists of two rotor mazes, one with six 31 -point double rotors for encyphorment, and the other with four 31 -point double rotors for motion control. Uses relay 5/32 translators. Tised by the dir Ministry over long-distance radio teleprinter circuits.

Size and Weight: Two 2' x 2' x 3' consoles and one 6' x 19" rack ier duplex teminal. Wt. approx. 500 lbs.

Gtatus: In use and in production.
Rajiation: The equipment is inherently insecure and it must be assumed that security is compromised by radiation Remedicl measures would involve re-design.

TOP SECRET

Page 59
(k) SEPLATUS 5 TICO SINGIE CHMNNEL NO. 1.

Single channel duplex synchronous equirment using random one-time five unit tie for cypher key. Accopts 31 characters (excluding blank). By using a magnet operated tape realer, facilities for the encryption of all 32 teleprinter characters can be providet. Designed to give traffic flow security but this facility has recently been found to be inadequate and a modification unit is being designed to rectify this deficiency. Equipment is usel on longIistance telegraph circuits over maic and wire.

Size: One $6^{\prime} \times 19^{\prime \prime}$ double sided rack per duilex terminal. Weight 450 lbs. Status: In use and in production at rate of six equipments per month. Existing orders will de cam Ieteü early in 1954. Falistion: The equipment is inherently insecure and it must be assumed that security is compromised by rajiation. Remedial measures would involve re-design.

Page 60
6. Synchronous Equipments with Electronic Crypto Component.
(a) ARTICHOKL.

Twin channel duplex synchronous system using subtractor (additive) key derived from an electronic key generator (double TUTTH) employing multi-cold-cathode tubes. accepts 31 characters (excluding blanks) from remote start/stop teleprinter ancillaries or 32 characters from tape. In the twin channel condition each channel transmits at $35 / 53$ bauds for $50 / 75$ baud

input. In the twin channel input single channel time division multiplex output

 condition the input speed per channel is $50 / 75$ bauds and the transmission speed 70/106 bauds. Provides traffic flow security. Basic. cypher setting of each key generator is achieved by mons of 27 plugs chosen from a set of 80 according to a key list: interim resets are effected by a quasi-random setting of the counters and a 64 position cyclometer switch which is advanced one position for each reset. Fugs are changed completely after every 64 resets. To be employed on long distance radio and wire teleprinter circuits.Size: One 7 ' x 19" double sided rack per twin channel duplex system. For vehicle installation the equipment can be mounted on on double-sidea $5^{\prime} 3^{\prime \prime}$ rack and one single sided $4^{\prime} \times 8^{\prime \prime}$ rack. Weight 700 lbs .

Status: Engineering ("山") model demonstrate l in 1952. Service trials of manufacturers (" B ") models due to commence in October 1953; rroluction at 6 per month due to start July 1954. Radiation: If alaitca for olcotronic keying it is considered that it would probably be secures.

844

TOP-SECRET

Page 61
(b) CONVETROR N. 5.

Key Taje Elininator for use with arar.tus 5 UCO. Consists of an
 The setting of the key eenerator is identical to that in \therefore RPICHOM excopt that the quasi-random setting of the counters is replech by counter setting accoriing to key lists. Synchronous operntion is derived from the ameratus 5 UCO , traffic flow security is provided. The equi-ment can be converted at a moment's notice for usa ns a self-contained start/stoy on-line teleprinter cypher favice

Sizu: Onc sinale sifled 6' rack. Wt. 500 lbs.
Status: Three Develojment models due in November 1953.
Radiation: If ajatol for electronic keying it is considered that it would probably be securc.

Page 62
7. Self-Synchronising (iuto-Key) Equipment.
(a) INCUBifIOR (late CFiapRX).
is start/stop oy iner text auto key teleprinter cypher device for halfduplex working. The object of the device is to provide the maximum security at a minimum cost and to this end the error multiplication factor inherent in a self-synchronising system of this type is to be investigated - the delay line from which the cypher key is derived is forty elements long. The error multiplication factor limits the use of the equipment to good quality wire and radio circuits.

Size: Not yet determined.
Status: One breadboard model has been completed and tested on a line comprising $8 \mathrm{~V} . \mathrm{F}$. channels in tandem. Magnetic binary circuits are being employed for the delay line and hard valves with some magnetic binaries for the remainder of the equipment. Two models are to be produced for field trials to determine whether the error multiplication factor can be accepted in practice.

Radiation: If adapted for electronic keying it is considered that
it would jrobably be secure.

Page 63

PART III SPEECH SECURITY EQUIPMENTS.

8. Vocoder Systems.

(a) BANGIE.

Single channel duplex fixed plant speech security system for line
use over landor long distance HP radio. Requires one 5 Kc or two 3 Kc transmission channels. Uses a 12 channel vocoder (10 spectrum and 2 independent pitch channels each quantized into 9 levels). Crypto-component consists of 12 independent random keys furnished on 35 mm. film. Tube complement approximately 2000.

Size and Weight: 14 bays of equipment either fixed plant or in 3 spectal vehicles.

Status:
Land-line trials carried out in U.K. over period. March-July 1953. Radio trials scheduled for early 1954. Only four equipments to be completed; size, weight and administrative problems preclude general adoption of this equipment.

Radiation: Has not been investigated but is believed to be secure.

-TOP-SECRET

Page 64

(b) SORCERER
speeah
Single channel full duplex/security equipment for use over land lines, short and long haul radio circuits. Uses nine channel vocoder (8 spectrum and 1 pitch). Cryptomemponent will be Convertor No. 5 supplying additive key.

Status: Two models for demonstration on a back-to-back basis, each consisting of four racks of equipment are due for completion in Autumn 1953. It is expected that the final model will be considerably smaller.

Radiation: Has not been investigated but believed to be secure•

Page 65

9. Pulse code modulated Systems.
(a) D 70 (Crypto component Blue Boy)

Twelve channel full-duplex microwave relay speech security equipment. Twenty-four teleprinter channels may be furnished by time multiplexing in lieu of one telephone channel. Speech chennels are quantized to 32 PCM levels. Each channel is sampled 7000 times per second, resulting in a total rate of 420 kilobauds. Employs an electronic key generator (TUTTE).

Status: Two repackaged development models of the key generator due for completion by end of 1953.

Radiation: Has not been investigated but believed to be secure.

TOP SECRET

Page 66

(b) TRUMPETER.

A development project, the ultimate ain is to provide a low echelon airborne or ground push-to-talk speech security equipment. The cryptocomponent will consist of a cypher text auto-key device. The method of speech coding is not yet decided, but P.C.M. is under consideration.

Status: In the early development stage. A first development model of the key generator employing gas tubes due for completion October 1953.

Radiation: Should be secure.

[^1]10. Delta Modulation Systems.
(c) HALLMARK II.

Single channel, self-synchronous push-to-talk speech security equipment. Speech is sampled at 33.3 Kc rate and is quantized by a. delta modulation scheme. Noise is injected in parallel with the speech input. Encypherment is provided by three suto-key stages in criscade. The equipment is primarily designed for use over tactical line-nfisight radio circuits. ilternative methods of operation are cossible as follows:-
(1) Line of sight radio: Fush to talk with single key generator at each terminal.
(2) Special wire lines (4 wire): Full duplex with separatu

(3) Whu additional sucurity is required for line or radio: Full duplex or push to talk with two key generators in scries et each terminal for each direction of transmission.

Size aria Weight: Deilta modulator $20^{\prime \prime} \times 16^{\prime \prime} \times 14^{\prime \prime} .80$ lbs. Eech key generator unit $20^{\prime \prime} \times 16^{\prime \prime} \times 14^{\prime \prime} .107$ lbs.

Froductio: Status: Froduction prototype models
under test. Production of sufficient models to permit full scalc troop trials due to start 1355.

Radiation: Has not been investigated but believed to be secure.

Page 68

(a) PICKWICK

A single channel duplex ciphony systern for use on lana lines of music (jrogram) circuit quality. It is intendea for use on a special switchea network. Speech is Delta modulated at a sampling rate of 15,000 per second. Encypherment is by means of plain text suto-key consisting of four 32-point rings. Transmission system is 4 lovels at 7,500 bauds.

Size: One cubicle $6^{\prime} 6^{\prime \prime} \times 20^{\prime \prime} \times 20^{\prime \prime}$. Weight 400 lbs.
Production Status: Two develoment models have been produced an:- subjectel to limited trisls on a 170 mile music circuit.

Rafintion: Has not been investigatel, but believal to bo secure.

844

TOP SECRET

Page 69

PART IV. FACSIMILE SECURITY SYSTEM.
11. MOUNTEBANK (LATE METFAX).

A system for the encypherment of black and white meteorological charts and similar data. On the interim model the traremitted signal when used on a single channel basis is at the rate of approximately 1000 bauds. The final model will operate at 1750 bauds to provide for standard facsimile equipment transmitting charts $20^{\prime \prime} \times 16^{\prime \prime}$ in a time of some 30 minutes. The crypto component is an electronic key generator operating on the Tutte-Tutte principle but incorporating also an 8 long random walk ring. The key output is added to the signal. The method of starting the key generators in step is a frame synchronising system similar to that used in AFSAY D 808.

Size: Transmit/Receive Terminal is 2 Racks each 6' x 20" plus one monitoring receiver. Receive Terminal is 2 Racks each $6^{1} \times 20^{\prime \prime}$.

Radiation: Has yet to be investigated.

TOP SECRET

Page 70

PART V. CRYPTOLOGIC EQUTPMENIS.
12. One-Time Fad Production Equipment.
(a) TRIMMER.

Represents the first effort towards utilising electronically cenerated random signals for the production of one-time pads. Source of signals is an electronic randomizer similar to that used in several other applications (e.g. 5 UCO key tape). Output is printed on wide carriage electromatic typewriters. Format programing is controlled by a unit using rotary line finder telephone awitches.

Status: One multiple equipment operating five independent outputs has been constructed. Method of bringing it into operational use is being studied.

TOP SECRET
13. One-Time Tape Froduction Equipments.
(a) ROCTEX KEY GEIVRATOR.

Equipment for producing randomly perforated five-level tape.
Source of random input signal is an unstable multi-vibrator requiring critical adjustment. A separate source is provided for each stream of holes in the tape. Faragraphing is punched into the tape and is accomplished by the parasraphing unit.

Status: Equipment currently in use and adequate supplies exist. No further production contemplated.
(b) 5 UCO KEY GYNERATOF.

Equipment for producing randomly perforated five-level tape with same type of randomizer as used in TRIMNER. A pulse generator is used to time the random source from the reperforators which are free running with clutch locked out. Perforator operatine speed is 400 characters per minute (same as rate of usage).

Status: 200 produced. No further production contemplated.

TOP SECRET

- 73 -

14. One-time Key Tape. Checking Equipment.

High Speed Checker for 5 UCO key tape.
Electronic, high speed checker for 100,000 cheracter spools of random tape used in the Apparatus 5 UCO No.1. Makes the following counts and prints out the results:-
(1) Plain stream (5 counts)
(2) Delta streams (5 counts)
(3) Combinations 1 and 2, 2 and 3, 3 and 4, 4 and 5, 1 and 3, 2 and 4, 3 and 5, 5 and 1 (eight counts).
(4) 15 consecutive dots in delta stream (5 counts)
(5) 3 consecutive strikes in delta cheracters (1 count)

Status: Three equipments built, fourth in course or construction.

844

TOP SECRET

Page 74

PLART VI. SPECIML PURPOSE CRYPTO EQUIPMENT.
15. I. F. F. Mk. X. Code Changer fur Mode I.

This is a small mechanioal 26 point maze of 5 rotors. It is criven by a clockwork clock anit the irums move at the cote changing interval. It has not been finally lecided whether this will be 5 mins, or 15 mins. The maze has a 5 wire output to produce the 5 unit binary codes required. It is used at ground radar I.F.F. interrogators ant in airborne transponders.

Target size and weight: As small and light ns jossible. In practice it may be a cylindor $4^{\prime \prime} / 6^{\prime \prime}$ Dia. an: about 7"/9" long: Pressurised. Wt. un:ler 10 Ibs.

Develomont Status: First levelopraent models shoulit be available early 1954, but clock nay be later.

[^0]: (B) - Also contains electronics.
 $\left(\frac{1}{7}\right)$ - Proytaes Traffic Mow Security.
 (A) - Adcitive syster.

[^1]: Page 67

