
Globe at a Glance | Pointers | Spinouts

Vol. 20 | No. 2 | 2013

M a n a g i n g E d i t o rEditor’s column

Managing Editor, The Next Wave

a. Press release, Los Alamos National Laboratory. 29 March 2013. Available at: http://www.lanl.gov/newsroom/news-
releases/2013/March/03.29-end-of-roadrunner.php.

“End of the road for Roadrunner” Los Alamos

National Laboratory, March 29, 2013.a

Five years after becoming the fastest

supercomputer in the world, Roadrunner was

decommissioned by the Los Alamos National Lab

on March 31, 2013. It was the �rst supercomputer

to reach the peta�op barrier—one million billion

calculations per second. In addition, Roadrunner’s

unique design combined two di�erent kinds

of processors, making it the �rst “hybrid”

supercomputer. And it still held the number 22 spot

on the TOP500 list when it was turned o�.

Essentially, Roadrunner became too power

ine�cient for Los Alamos to keep running. As

of November 2012, Roadrunner required 2,345

kilowatts to hit 1.042 peta�ops or 444 mega�ops

per watt. In contrast, Oak Ridge National

Laboratory’s Titan, which was number one on the

November 2012 TOP500 list, was 18 times faster yet

�ve times more e�cient.

In addition, data-intensive applications for

supercomputers are becoming increasingly

important. According to the developers of the

Graph500 benchmarks, these data-intensive

applications are “ill-suited for platforms designed for

3D physics simulations,” the very purpose for which

Roadrunner was designed. New supercomputer

architectures and software systems must be

designed to support such applications.

These questions of power e�ciency and

changing computational models are at the core

of moving supercomputers toward exascale

computing, which industry experts estimate will

occur sometime between 2020 and 2030. They are

also the questions that are addressed in this issue of

The Next Wave (TNW).

Look for articles on emerging technologies in

supercomputing centers and the development

of new supercomputer architectures, as well as a

brief introduction to quantum computing. While

this column takes the reader to the recent past

of supercomputing, the remainder of the issue

will propel you “beyond digital” to the future of

advanced computing systems.

Contents

3 De�ning the future with modeling,
simulation, and emulation
Benjamin Payne & Noel Wheeler

7 Predicting the performance of extreme-

scale supercomputer networks
Scott Pakin, Xin Yuan, & Michael Lang

20 Doing more with less: Cooling computers
with oil pays o�
David Prucnal

30 Energy-e�cient superconducting
computing coming up to speed
Marc A. Manheimer

33 Beyond digital: A brief introduction to
quantum computing
Paul Lopata

38 GLOBE AT A GLANCE

40 POINTERS

42 SPINOUTS

Vol. 20 | No. 2 | 2013

�e Next Wave is published to disseminate
technical advancements and research
activities in telecommunications and
information technologies. Mentions of
company names or commercial products
do not imply endorsement by the
US Government.

�is publication is available online at
http://www.nsa.gov/research/tnw/tnw202/
article1.shtml. For more information,
please contact us at TNW@tycho.ncsc.mil.

Article title goes here unless article begins on this page. If article begins on this page, override rules and text using Ctrl + Shift.

2

/

De�ning the

future with

modeling,

simulation,

and emulation

B e n j a m i n P a y n e , P h D,
a n d N o e l W h e e l e r

 The Next Wave | Vol. 20 No. 2 | 2013 | 3

I
nformation has become a key currency and
driving force in modern society. Keeping
our leaders apprised of the most current

information enables them to make the decisions
essential to keep our country safe. The National
Security Agency’s reputation as the “nation’s
guardian” relies heavily on the �ow of information,
all of which is handled by an awe-inspiring array
of computers and networks. Some of the problems
encountered by NSA require a special breed of
machines known as high-performance computers or
supercomputers. Employing these powerful machines
comes with a considerable price tag to the US government.
When acquiring supercomputers, decision makers need to
have a degree of con�dence that a new computer will be
suitable, even in cases when the machine does not yet exist.

4

De�ning the future with modeling, simulation, and emulation

What is a
supercomputer?

Although supercomputers
are unique, custom-built
machines, they fundamen-
tally share the design of
the computers you use at
home—a processor (i.e.,
a central processing unit
or CPU), small and fast
memory (i.e., random-
access memory or RAM),
storage (i.e., hard disk
drive/CD/DVD), and a
network to communicate
with other computers. A
typical high-performance
computing (HPC) system
could be considered a per-
sonal computer on a much
grander scale, with tens
of thousands of proces-
sors, terabytes (i.e., trillions of bytes) of memory, and
petabytes (i.e., quadrillions of bytes) of storage (see
�gure 1). High-performance computers can readily �ll
a large room, if not a whole building, have customized
cooling infrastructure, use enough electricity to power
a small town, and take an act of Congress to purchase.
Such an investment is not made without a great deal of
study and thought.

Simulating a supercomputer

Although HPC technology is not unique to NSA, the
specialized problems faced by the Agency can neces-
sitate unique customizations. Because NSA’s applica-
tions and so�ware are o�en classi�ed, they cannot be
shared with the architects and engineers developing
supercomputers. At the same time, an investment of
this magnitude requires con�dence that a proposed
system will o�er the performance sought.

Currently, benchmarks, simpli�ed unclassi�ed
so�ware that exercises important attributes of a com-
puter system, are developed and used to evaluate the
performance of potential computing system hardware.
However, these benchmarks may not paint the com-
plete picture. To better understand this problem, there

is substantial value to the construction of a model.
Architects, engineers, and scientists have a long his-
tory of building models to study complex objects, such
as buildings, bridges, and aircra�s.

A new team—the Modeling, Simulation, and Emu-
lation (MSE) team—within the Laboratory of Physi-
cal Science’s Advanced Computing Systems Research
Program [1] has been assembled to address this gap
between classi�ed so�ware, which cannot be distrib-
uted to vendors, and the vendors’ hardware systems,
which have not been purchased by NSA. As an addi-
tional twist, the proposed hardware may be built from
prototype components such as the hybrid memory
cube (HMC; see �gure 2), a three dimensional stacked
memory device designed by a consortium of industry
leaders and researchers [2]. �e core objectives of the
MSE team include exploration of system architectures,
analysis of emerging technologies, and analysis of
optimization techniques.

Owners of HPC systems desire a computer that is
in�nitely fast, has in�nite memory, takes up no space,
and requires no energy. None of these attributes are
truly realizable, and when considering a practical HPC
system, trade-o�s must be considered. When analyz-
ing a prospective HPC system, four primary metrics
are customarily considered: �nancial cost, system

0.1 byte per

second per �op

0.1 byte per

second per �op

1 byte per

second per �op

1 byte per

second per �op

0.01 byte per

second per �op

Processor

200+ giga�ops

Processor

200+ giga�ops

Local Memory

Capacity=0.1 byte per �op

Disk Storage

Capacity=10 bytes per �op

Interconnect

Local Memory

Capacity=0.1 byte per �op

FIGURE 1. A high-performance computer is like a personal computer on a much grander scale—
it has tens of thousands of processors, terabytes of memory, and petabytes of storage.

 The Next Wave | Vol. 20 No. 2 | 2013 | 5

FEATURE

resilience, time-to-solution, and energy e�ciency.
�ese metrics are interdependent. For example, in-
creasing the speed of an HPC system will increase the
amount of power it consumes and ultimately increase
the cost necessary to operate it. In order to measure
these metrics, one could build the system and test it.
However, this would be extremely expensive and dif-
�cult to optimize. A model simulating the computer
can be developed in far less time, and design param-
eters can be adjusted in so�ware to achieve the desired
balance of power, performance, reliability, and cost.

Any simulation or model of a computer should ad-
dress the metrics listed above. If any are not addressed,
then the model could yield incomplete results because
optimizing for fewer than all relevant variables poten-
tially leads to non-global extrema. Many scalar bench-
marks, for example the TOP500 and the Graph500,
focus exclusively on one characteristic, like time-to-
solution, to the neglect of the other parameters of
interest. �e MSE team is collaborating to evangelize
a more balanced approach to multiple facets of HPC
system characterization, assuring an optimal solution
to the Agency’s needs.

�e use of benchmarking so�ware allows for a
more comprehensive evaluation of a proposed com-
puter architecture’s performance. �is enables HPC
system architects to better target their designs to serve
NSA’s needs. Simply stated, NSA has to work within
budgetary and power (i.e., electricity) constraints,
and it is vital to maximize the return on investment of
money and time.

While this description is somewhat generic to all
HPC system purchasers, NSA is willing to build spe-
cial purpose hardware devices and to employ specially
developed programming languages if a cost-bene�t
analysis demonstrates noteworthy bene�ts. Unlike
developers in the scienti�c community whose exper-
tise usually does not span science, computer program-
ming, and computer architecture, developers at NSA
access and understand the full so�ware and hardware
stack—algorithm, source code, processors, memory,
network topology, and system architecture. Compute
e�ciency is o�en lost in the process of separating
these abstraction layers; as a result, NSA makes an ef-
fort to comprehend the full solution.

�is approach to mission work is re�ected in the
work of the MSE team. A simulation or model should

take a holistic approach, targeting the network, CPU,
memory hierarchy, and accelerators (e.g., a graphics
processing unit or �eld-programmable gate array).
Multiple levels of detail for a simulation are required
to accomplish this. A simulation may be compute-
cycle or functionally accurate; it may range from an
abstract model to a hardware simulation including
device physics.

Simulation technology

To accomplish the objective of enabling HPC system
simulation within NSA, the MSE group carried out a
survey of existing simulators from academia, industry,
and national labs. Although many simulators exist for
HPC systems, few attempt to model a complete archi-
tecture. �ere have been previous e�orts like Univer-
sity of California, Los Angeles’s POEMS and Hewlett
Packard’s COTSon, but these projects are no longer
actively supported. Two simulation frameworks, the
Structural Simulation Toolkit (SST; see �gure 3) [3]
from Sandia National Laboratories and Manifold from
Georgia Institute of Technology represent today’s
most promising candidates. Additionally, NSA re-
searchers have been cra�ing simulation tools which
are also being considered for application in the HPC
problem space.

FIGURE 2. NSA collaborated with the University of Maryland
and Micron to develop a simulation tool for Micron's Hybrid
Memory Cube that is helping to advance supercomputing
applications. Micron now is sampling the three-dimensional
package that combines logic and memory functions onto a
single chip.

6

De�ning the future with modeling, simulation, and emulation

Both SST and Manifold use component simula-
tors to construct a larger-scale system. For example,
SST can use the gem5 [4] CPU simulator along with
the University of Maryland’s DRAMSim2 to capture
performance characterization of processor to memory
latency and bandwidth. Since simulating a full-scale
HPC system would require an even larger supercom-
puter to run in a reasonable time, SST breaks the
simulation into two components: SST/micro, a node-
level simulation (e.g., CPU, memory), and SST/macro,
which handles network communication between
nodes. With the emerging HMC memory technol-
ogy, the MSE team is making plans to employ the SST
family of tools to extensively model an HPC system
and gain perspective on its potential capabilities. �is
will place NSA’s HPC programs on the leading edge
in understanding the application potential for this
new technology.

At this time, SST/micro is capable of simulating
the execution of programs in a single processor core
and of monitoring the application’s use of the simu-
lated CPU and memory. By 2014, the development
team at Sandia plans on parallelizing the simulation,
enabling multiple processor cores to be simultaneously
simulated. �is would allow parallel applications (i.e.,
so�ware designed to simultaneously run on multiple
processor cores) to be run in a realistic compute node
con�guration (i.e., multiple cores concurrently ac-
cessing the same memory hierarchy) while potentially
reducing the time needed to complete a simulation.

SST/macro, combined with NSA’s benchmarking
so�ware, has already been used to demonstrate how
di�erent network topologies, used to connect an HPC
system’s processing cores, can a�ect the time-to-solu-
tion metric. SST/macro allowed researchers to specify
data-routing algorithms used in the network con�gu-
ration and to study how a modi�ed network topology
serves to optimize the performance of a system. �e
clear bene�t of this research is in the ability to enable
application and network codesign to create an optimal
and cost-e�ective architecture.

�e SST and its counterpart, Manifold, are being
actively developed and are useful for research, but they
are not yet ready for use as decision-making tools by
NSA. �e MSE team is actively collaborating with San-
dia and the Georgia Institute of Technology, providing
feedback, guidance, and assistance to the simulation
framework developers. Multiple other national labs,
academic researchers, and vendors are also partici-
pating in the e�ort driven by the MSE team. Other
potential applications for simulation techniques could
be codesign of so�ware before the actual hardware is
available, so�ware performance analysis/optimization,
and debugging of so�ware.

About the authors

Noel Wheeler is the lead of the Modeling, Simulation,
and Emulation (MSE) team in the Advanced Comput-
ing Systems group at NSA’s Laboratory of Physical
Sciences. Ben Payne, PhD, is a physicist working as a
postdoctoral researcher for the MSE team.

Power,
Area cost projections

Checkpointing

Con�guration Statistics

Vendor
Component

Open
Component

Simulator Core

Services

FIGURE 3. Sandia National Laboratories’ Structural Simulation
Toolkit is one of today’s most promising high-performance
computing system simulators.

References

[1] Klomparens W. “50 Years of research at the Laboratory
for Physical Sciences.” �e Next Wave. 2007;16(1):4–5.

[2] Hybrid Memory Cube Consortium [homepage; updated
2013]. Available at: http://www.hybridmemorycube.org.

[3] Sandia Corporation. SST: �e Structural Simulation
Toolkit [homepage; accessed 4 Apr 2013]. Available at:
http://sst.sandia.gov.

[4] Binkert N, Beckman G, Black G, Reinhardt SK, Saidi A,
Basu A, Hestness J, Hower DR, Krishna T, Sardashti S, et. al.
“�e gem5 simulator.” ACM SIGARCH Computer Architec-
ture News. 2011;39(2):1–7. doi: 10.1145/2024716.2024718.

FEATURE

Predicting the performance of
extreme-scale supercomputer
networks |

A
modern supercomputer is the Internet in a microcosm, with tens of thousands of nodes—
computers not much di�erent from the one you may be using to read this article—all
hooked together via a high-speed network. However, while computers on the Internet

operate largely independently of each other, supercomputers regularly harness the power of
thousands to many tens of thousands of nodes at once to run a single application signi�cantly
faster than any lone computer could. Coordinating the e�orts of so many nodes requires massive
amounts of communication, making the design of the interconnection network critical to the
performance of the supercomputer as a whole.

In this article we present technology we are developing to predict the impact of various network-
design alternatives on the overall performance of supercomputing applications before the
supercomputer is even built. This is important because a large supercomputer can easily cost
tens to hundreds of millions of dollars (and in the case of Japan’s K supercomputer, over a billion
dollars). Being able to evaluate network technologies during their design phase helps ensure that
the supercomputer will provide as much performance as possible to applications.

 The Next Wave | Vol. 20 No. 2 | 2013 | 7

S c o t t P a k i n , X i n Yu a n , a n d M i c h a e l L a n g

8

Predicting the performance of extreme-scale supercomputer networks

Network topologies

Supercomputers gain their performance edge from
parallelism, the ability to perform many pieces of
work at the same time. Taking advantage of a super-
computer consequently requires an application to
divide up the work it has to perform into small chunks
that can be spread over a supercomputer’s nodes. In
practice, some of these chunks of work depend on
other chunks.

Consider, for example, an arithmetic expression
such as (5+5)×(6+8). �e two sums can be computed
concurrently, but the product cannot be computed
until a�er both sums have been computed. �is neces-
sitates communication, commonly taking the form
of inter-node messages sent over a communication
network. �e node computing one sum has to tell
the other node when it has �nished and what sum it
computed so the latter node can perform the multipli-
cation. (Alternatively, both nodes can communicate
their sum to a third node, which can multiply the two
sums.) Network speed is critical to application perfor-
mance. If the network is too slow relative to the time
spent in computation, which is likely the case for our
simple arithmetic example, there will be no perfor-
mance gain to be had from parallelism, and the super-
computer’s performance capabilities will be wasted.

While the Internet is composed of a motley con-
nection of subnetworks haphazardly linked together,
supercomputer networks gain some of their speed
advantage by exploiting homogeneous hardware ar-
ranged into regular patterns. �is avoids some nodes
lying in the boondocks of the network and slowing
down the entire application whenever distant nodes
need to communicate with them. Figure 1 illustrates
three topologies out of endless possibilities. Contrast
the irregular structure of �gure 1(a), which illustrates
the graph nature of the Internet’s topology, with the
symmetry in each of �gures 1(b) and (c), which il-
lustrate two common supercomputer topologies: a fat
tree and a three-dimensional torus (i.e., 3-D torus).

Nodes in the �gure are shown as blue spheres.
(Each of a modern supercomputer’s nodes typically
contains 10–100 processor cores, making a node a
powerful computer in its own right.) Network links
are portrayed in the �gure as lavender tubes and
switches are portrayed as salmon-colored boxes. A
switch receives data on one link and, based on where
the data is to be delivered, sends it out on another link.

FIGURE 1. Three examples of network topologies. Figure (a)
shows an example of a small-world network topology. Figure
(b), which depicts a fat tree, and �gure (c), which depicts a 3-D
torus, are two common supercomputer network topologies.

(a)

(b)

(c)

FEATURE

 The Next Wave | Vol. 20 No. 2 | 2013 | 9

For example, if the le�most node in the fat tree de-
picted by �gure 1(b) needed to communicate with the
rightmost node, it could send data to the switch above
it, which could forward the data to the switch above
it and then to the switch above it. �e topmost switch
could then forward the data diagonally down and to
the right, then diagonally down and to the right again,
and �nally down to the destination node.

An alternative route would be to start with a couple
of diagonally upward-and-rightward hops followed
by vertically downward hops. (As an exercise, see
if you can �nd a third path from the le�most node
to the rightmost node. Are there any more routes?)
We use the term routing algorithm to describe the
process by which switches select one route among
the alternatives.

�e importance of a topology such as a fat tree
is that there are multiple ways to get from any node
to any other node. Hence, if one route is congested,
data can proceed along a di�erent route. Consider
an analogy to cars and roads, with cars represent-
ing data, roads representing links, and intersections
representing switches. �e more roads connecting a
residential neighborhood to a commercial district, the
less tra�c is likely to appear on any given road. At the
extreme, one could connect every node to every other
node in a supercomputer to eliminate all congestion.
In practice, this is not done for the same reason that
there are not private roads connecting every house to
every other house in a town—cost. Switches and links
are expensive; hence, a network designer must simul-
taneously minimize the number of switches and links
while maximizing the number of alternative routes
between pairs of nodes. A 10,000 node supercomputer
with all-to-all connectivity would require one hundred
million links. At even a dollar apiece (an unrealisti-
cally small amount), this would dominate the cost of
the supercomputer.

Figure 1(c) illustrates a 3-D torus, another com-
mon supercomputer network topology and one
that makes di�erent trade-o�s from a fat tree with
respect to switch and link count and alternative
paths. In this topology, nodes and switches are ar-
ranged in a cube (or rather, rectangular cuboid)
formation, and wraparound links enable data sent
out one side of the network to re-enter on the other
side. For example, if the node in the lower le� of
�gure 1(c) needed to communicate with the node
in the upper right, the long way would be to travel

up-up-up-right-right-right-back-back-back. However,
the wraparound links enable the data to travel down
to the topmost position, then le� to the rightmost
position, and �nally forward to the backmost position,
taking three hops instead of nine.

Putting cost arguments aside for the moment and
assuming the same node count in both networks,
could a fat tree be expected to outperform a 3-D
torus, or would the 3-D torus likely be the faster net-
work? In the next section, we discuss how to answer
this question.

Simulating networks

As creating a new network is expensive and time-con-
suming, we want to be able to gauge how well a given
network might perform in advance of its construction.
�is is commonly done via network simulation—mim-
icking hardware’s behavior with slower but vastly more
malleable so�ware. We again turn to a car-and-road
analogy. Consider the situation of bumper-to-bumper
tra�c on two single-lane roads that merge into one
single-lane road, as shown in �gure 2. It would be
prohibitively expensive to construct the roads and hire
drivers to drive in the speci�ed pattern just to deter-
mine the speed at which tra�c can move. Instead, one
could write a computer program that moves virtual
cars on virtual roads and measures how much time
elapses in this virtual world. In networking terms, this
approach is called �it-level simulation because it tracks
every �it (a unit of data, typically a byte) as it moves
from switch to switch throughout the network.

A

C

B

FIGURE 2. To determine the speed at which vehicles can move
in bumper-to-bumper tra�c on two single-lane roads that
merge into one single-lane road, one can simulate this “net-
work” using a computer program. There are di�erent approach-
es to network simulation, which vary in speed and degree
of realism.

10

Predicting the performance of extreme-scale supercomputer networks

At each point in (virtual) time, the simulator con-
siders the current location of each �it in the network;
the routing algorithm, which is used to decide where
each �it should go next; the internal switch architec-
ture, which controls how link contention is resolved
(for example, a simple alternating of �its as illustrated
by the cars in �gure 2); and all the myriad other char-
acteristics that determine performance. With regard to
�gure 2, a simulator would need to take into consider-
ation not only the speed limits and layout of the road
system but also the decision-making process of each
driver on the road to know where the driver wants to
go and how he will negotiate with other drivers as to
who gets to go �rst when lanes merge.

�ere are two main problems with �it-level simu-
lation, one inherent and one arti�cial. �e inherent
problem is that simulating a large network at such a
�ne level of detail is necessarily slow—vastly slower
than real network hardware could run. �ousandfold
slowdowns are not uncommon. In other words, the
simulator might need to run for an hour to report how
a network might behave over the course of a single
second of execution. To put that slowdown in perspec-
tive, consider that many of the scienti�c applications
commonly run on supercomputers at Los Alamos Na-
tional Laboratory take hours to days to run; a few even
require months to over a year to complete. Dilating
such times by a factor of a thousand clearly limits the
practicality of simulating such applications. Conse-
quently, �it-level simulations must by necessity whittle
down their inputs to a more manageable size, simulat-
ing only small networks and for only brief periods of
time, which limits realism.

�e arti�cial problem is that for simplicity of opera-
tion, simulators are typically fed synthetic communi-
cation patterns rather than communication patterns
derived from actual supercomputing applications. For
example, two common test patterns are uniformly
random tra�c in which each node sends data to some
number of other nodes selected at random, and hot-
spot tra�c in which all nodes send data to a small sub-
set of the nodes selected at random. Second, almost all
simulation studies presented in the supercomputer-
network literature assume that communication begins
at �xed points in time, typically exclusively at the start
of the simulation. �ird, computation time is almost
universally ignored, even though this can greatly a�ect
the severity and impact of link contention.

Returning to our car-and-road metaphor, typical
simulator usage would be analogous to gauging the
quality of a layout of a city street under assumptions
like the following:

1. People drive randomly from one place to another
as opposed to, say, a bias to drive to the kids’
school at the beginning of the day, then to the
o�ce, then to the kids’ school again, and �nally
back home.

2. Everyone leaves home at exactly 9:00 a.m.,
drives directly to his destination, and leaves
the car there. A less-common variation on this
assumption is that Alice picks up Bob at ex-
actly 8:15 a.m., Carol at exactly 8:30 a.m., and
Dave at exactly 8:45 a.m. for their carpool to
work—all regardless of how heavy or light the
tra�c happened to be at the time or whether
a new highway had just been built to speed up
their commute.

3. No one stops to work, shop, or relax; all anyone
in the city does is drive.

It would be hard to lend much credence to any
result of such a study, yet this is very much how super-
computer networks are analyzed today. Again, this is
an arti�cial problem. �ere is no fundamental reason
that such assumptions must be made; they are merely
a convenience to simplify the simulation e�ort. In the
next section, we describe how we are improving the
state of the art in network-simulation technology, both
in terms of simulation speed and simulation realism.

A new approach to network simulation

Our goal is to address all of the shortcomings dis-
cussed above; in particular, our aim is to simulate all
of the following:

 Full-sized applications, not synthetic
communication patterns;

 Hours of application-execution time,
not seconds;

 Tens of thousands of nodes, not hundreds to
low thousands;

 Communication interleaved with computation,
not treated as independent; and

 Communication beginning when prior commu-
nication or computation ends, not at �xed points
in time.

 The Next Wave | Vol. 20 No. 2 | 2013 | 11

FEATURE

�e two mechanisms that underlie our approach
are �ow-based simulation and logical clocks. We now
describe each of these in turn.

Flow-based simulation

�e reason that �it-based simulation is so slow is that
supercomputer networks contain a massive number
of components, and each of these must be simulated
individually. Logically, if one were to simulate large
groups of components as single entities, this would
greatly reduce the amount of work, and therefore time,
required to run the simulation. We therefore choose
to consider a complete, end-to-end communication
operation as a single unit of simulation rather than
the numerous �its that get transmitted as part of
that operation.

Before we explain the details precisely, we present
the intuition behind our approach in terms of our run-
ning car-and-road analogy. Assuming a 40 mph speed
limit and that the distance from the front of one car to
the front of the next is 29 feet, the math works out to
two cars per second passing any particular point on
the road. Hence, if we knew that 100 cars wanted to go
from point A to point B and that there was no other
tra�c on the road, the �rst car in that sequence would
arrive a�er some given length of time (i.e., however
long it takes to drive from point A to point B on an
empty road, say three minutes), and the last car would
arrive 100 ÷ 2 = 50 seconds later.

We now consider the variation indicated by �gure
2: 100 yellow cars want to go from point A to point
B at the same time that 100 red cars want to go from
point C to point B. What impact does the shared seg-
ment of road have on the time it takes each of those
two �ows of cars to reach their destination? As before,
two cars per second are reaching point B, but because
the two �ows are interleaved, only one yellow car per
second and one red car per second can reach that
location. �e �rst car in each �ow is not delayed, so it
still takes our assumed three minutes to arrive at point
B, but the last car in each �ow arrives not 50 seconds
later but 100 ÷ 1 = 100 seconds later.

�e point of this exercise is to demonstrate that, un-
like with �it-level simulation, we do not have to con-
sider each individual car’s behavior. Instead, we can
analyze an entire sequence of cars at once, regardless
of whether there are a hundred cars in each �ow or a

million. Furthermore, we do not need to consider how
the drivers negotiate the merge. All that matters is that
there is an even 50–50 split between red and yellow
cars on the merged segment of road, not that it went
red–yellow–red–yellow versus red–red–yellow–yellow.

Our approach to network simulation works in
very much the same way as the preceding analysis
of tra�c speeds. As in the above instance, instead
of working with communication times directly, we
work with communication rates, which we can easily
relate back to time by noting that time = latency +
(data size ÷ communication rate), where latency is
the time it would take a single �it to move from the
source node to the destination node in the absence
of any other tra�c. For example, suppose that the
latency between node A and node B is 0.6 seconds
and that all of the links between node A and node
B are capable of transmitting 5 gigabytes per sec-
ond. If node A were to transmit 1 gigabyte of data
to node B, this communication would take a total of
0.6 + (1.0 ÷ 5.0) = 0.8 seconds.

While latencies are essentially constant and data
sizes can be extracted from an application (as we
will discuss further when we discuss logical clocks),
communication rates vary dynamically based on the
amount of link contention, the number of communica-
tions sharing a network link at any given time. Con-
sider the network topology shown in �gure 3 (i.e., a
2-D mesh).

FIGURE 3. An illustration of link contention on a 2-D mesh
network topology.

12

Predicting the performance of extreme-scale supercomputer networks

If node A sends data to node H via the route A–
B–E–H (cyan links) at the same time as node B sends
data to node F via the route B–E–F (magenta links),
the B–E link will be shared by the two routes. Sup-
posing the link is capable of transmitting at a rate of 5
gigabytes per second, 2.5 gigabytes per second will be
allocated to each of the two communications. Because
data cannot enter a link faster than it can exit, this
slow link then exerts back-pressure all the way to the
source nodes, slowing down the entire communication
to 2.5 gigabytes per second. Using the previously men-
tioned sample numbers from each of the two commu-
nications will now take 0.6 + (1.0 ÷ 2.5) = 1.0 seconds
instead of the contention-free 0.8 seconds computed
earlier—slower but notably not twice as slow, even
though the link speed e�ectively halved.

Logical clocks

We criticized prior simulation e�orts for relying on
synthetic communication patterns instead of actual
communication patterns derived from supercomput-
ing applications. Our question is therefore how we
can acquire an application’s communication pat-
tern so that it can be analyzed by a simulator. �e

enumeration of all communication that an application
performs during its execution—which node sent how
many bytes to whom when—is called a communication
trace. Fortunately, intercepting and logging an applica-
tion’s communication operations is fairly straightfor-
ward, and there exist numerous tools for collecting
communication traces.

�e issue is not with collecting the trace but with in-
terpreting it. Figure 4 helps clarify the problem. Figure
4(a) presents a trace of a communication pattern in
which node A sent a message to node C, then node B
sent a message to node C, then, a�er a brief interlude,
node C sent a message to node A, and �nally, node
C sent a message to node B. A graphical view of this
trace is shown in �gure 4(b). Send and receive times
are reported from the perspective of each node’s clock.
For example, the �rst line of the table in �gure 4(a)
indicates that node A reported that it sent a message
to node C at time 10 and that node C reported that it
received node A’s message at time 16.

�e �rst problem with this type of communication
trace is that supercomputer nodes seldom include per-
node clocks that are globally synchronized to within
half a message latency (i.e., the tolerance needed to

(a) Communication trace

Source
Node

Destination
Node

Sent
Time

Received
Time

A C 10 16

B C 14 20

C A 28 34

C B 30 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(b) Timeline view of the trace

(c) Communication trace with poorly synchronized clocks

Source
Node

Destination
Node

Sent
Time

Received
Time

A C 14 12

B C 14 16

C A 24 38

C B 26 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(d) Timeline view of the trace with poorly synchronized clocks

FIGURE 4. Example of a communication pattern. Figure (a) and (b) illustrate a communication trace of nodes with per-
fectly synchronized clocks (an unrealistic condition). Figure (c) and (d) illustrate a communication trace of nodes with poorly
synchronized clocks.

 The Next Wave | Vol. 20 No. 2 | 2013 | 13

FEATURE

avoid erroneous readings, as discussed
below). �ese would represent a costly but
rarely useful expense. Furthermore, access
to a single, centralized clock would be dev-
astating to performance—imagine �gure
2 with tens of thousands of lanes merging
into one. Hence, some node clocks may run
slightly ahead or behind others, and even
worse, some node clocks may run slightly
faster or slower than others. �is is called
clock dri�. Although clock-synchronization
algorithms exist, so�ware implementa-
tions are unable to synchronize clocks
to a granularity �ne enough to measure
network-communication time.

Figure 4(c) represents the same trace as
�gure 4(a) but as measured with node A’s
clock running four time units late and node
C’s clock running four time units early. As
the graphical depiction of this trace in �g-
ure 4(d) clari�es, the faulty clocks make the �rst mes-
sage appear to have been received before it was sent,
a physical impossibility. Furthermore, instead of each
message taking a constant six time units to get from
source to destination as indicated by the “perfect”
trace in �gure 4(a), the B–C communication in �gure
4(c) appears to take only two time units while the C–B
communication appears to take ten.

�e second problem with using �gure 4-style com-
munication traces involves how the simulator replays
the traced communication pattern. Suppose we want-
ed to simulate a network that runs twice as fast as the
one on which the communication trace was acquired
or perhaps the same network attached to processors
running three times as fast as on the measurement
system. It would be unreasonable in either case to
expect all of the messages to be sent at the same times
shown in �gure 4(a). A node that receives a message
sooner or �nishes some computation faster may then
be able to send a message earlier. We therefore do not
want our simulator necessarily to simulate messages
being sent at the times listed in the input trace but
rather at the times that the simulated supercomputer
would actually send them.

�e solution to both of the preceding problems is
an abstraction called a logical clock, �rst proposed by
Lamport in 1978 [2] and sometimes called a Lamport
clock a�er its inventor. A logical clock is a simple, inte-
ger counter that “ticks” as follows:

1. When a node performs any operation (commu-
nication or computation), its clock advances its
logical time by one.

2. When a node sends a message, its clock in-
cludes the current logical time along with the
normal data.

3. When a node receives a message, it sets its logi-
cal clock to the maximum of its current logical
time and one plus the logical time included in
the message.

�ese rules help de�ne a “happened before” relation
(mathematically, a partial ordering) on communica-
tion operations. If one operation occurred at a smaller
logical time than another, then the simulator cannot
perform the second operation until the �rst one �n-
ishes. In contrast, if two operations occur at the same
logical time, the simulator has no restrictions on the
order it performs them: it can run A then B, B then A,
or both simultaneously. In essence, a logical clock pro-
vides a way to globally order communication opera-
tions regardless of the locally observed time at which
each operation may appear to have occurred.

To clarify using yet another driving analogy, con-
sider Alice’s and Carol’s sequences of events, presented
in �gure 5.

In what order did those events happen? It would be
incorrect to sort them by the times listed in the event
descriptions because Alice and Carol may not have
synchronized their watches beforehand and because

Alice’s Journal

I left home at 3:30 p.m. to drive my
son to soccer practice. When I got
to the soccer field my watch read
3:55 p.m.

I left the soccer field five minutes
later, at 4:00 p.m., to join Carol for
tea. I arrived at the tea house at the
same time as Carol, at 4:30 p.m.
according to my watch.

After a lovely hour of tea with Carol,
we both drove home at the same
time, when my watch read 5:30
p.m. just in time to make dinner.

Carol’s Journal

I left home at 6:30 p.m. to join
Alice for tea. I arrived at the tea
house at 7:00 p.m. according to
my watch, which is right when
Alice arrived.

I had an enjoyable tea time with
Alice. We both left 45 minutes later,
at 7:45 p.m. on my watch, to drive
home. I got home at 8:05 p.m.

FIGURE 5. The ordering of events from Alice’s and Carol’s perspective.

14

Predicting the performance of extreme-scale supercomputer networks

either watch may run faster or slower than the other.
Nevertheless, we can intuitively rely on what makes
sense to order the speci�ed events. Speci�cally, we
know that Alice must have driven to the soccer �eld
before driving from the soccer �eld; we know that
both Alice and Carol were at the tea house at the same
time; and we know that both Alice and Carol le� the
tea house at the same time a�er having tea together.

Figure 6 shows how to express that “what makes
sense” intuition as formal statements of changes to
logical time. �e table assigns one logical clock to
each location (as opposed to each person) mentioned
and lists the events that Alice observed, in order,
followed by the events that Carol observed, in order.
(�e results would be the same if we swapped or even
interleaved Alice’s and Carol’s journals, as long as the
events were not reordered relative to how they ap-
pear in either journal.) In our network-simulation
framework, locations correspond to nodes, and a
person driving from location to location corresponds
to communication.

At the beginning, all locations are at logical time
1, and Alice and Carol are both in their respective
home. When Alice drives to the soccer �eld, she must
arrive some time a�er she was at home. �e soccer
�eld therefore increments its logical time to 2, the

maximum of its current time (1) and one plus the
time at Alice’s house (1 + 1). When Alice drives to the
tea house, she must arrive some time a�er she le� the
soccer �eld. �e tea house therefore increments its
logical time to 3, the maximum of its current time (1)
and one plus the time at the soccer �eld (1 + 2). When
Alice drives home, she must arrive both a�er the last
time she was there (1) and a�er she le� the tea house
(3), that is to say, at time 4.

Turning our attention to Carol, Carol must arrive
at the tea house at a time later than when she was at
home. However, the tea house’s clock does not change
because the maximum of its current time (3) and
one plus the time at Carol’s house (1 + 1) is already 3.
Finally, when Carol drives home, she must arrive both
a�er the last time she was there (1) and a�er she le�
the tea house (3), that is to say, at time 4.

For clarity, the bottom part of �gure 6 re-sorts the
data by logical time, showing which events happened
at each time. From this presentation, one can infer that
despite the physical times stated in the event descrip-
tions, Alice could not possibly have returned home be-
fore Carol arrived at the tea house (time 4 versus time
3). However, the logical-clock readings in �gure 6 say
nothing about whether Alice arrived back at her home
before Carol arrived back at her home (time 4 for

Logical time spent at various locations

Event Alice’s House Carol’s House Soccer Field Tea House

(Our story begins) 1 1 1 1

Alice’s Soccer 1 1 2 1

Soccer Tea 1 1 2 3

Tea Alice’s 4 1 2 3

Carol’s Tea 4 1 2 3

Tea Carol’s 4 1 2 4

Logical Time Observable Events

1 Alice and Carol are both at home.

2 Alice is at the soccer �eld. Carol may be either at home or en route to the tea house. We have insu�cient
information to determine which.

3 Alice and Carol are both at the tea house.

4 Alice and Carol are both at home. We have insu�cient information to determine who arrived �rst.

FIGURE 6. The ordering of events based on logical time.

 The Next Wave | Vol. 20 No. 2 | 2013 | 15

FEATURE

both events). More subtly, the readings do not indicate
which of Alice or Carol arrived �rst at the tea house
(as both soccer → tea and Carol’s → tea completed at
time 3); we know only that neither le� (time 4) before
both arrived (time 3).

Logical clocks provide an important mechanism
for ful�lling the goals stated at the beginning of this
section in that they enable a network simulator to
reason about communication dependencies—what
must happen before what—rather than physical times.
One additional innovation of our network-simulation
methodology is that we record computation time in
physical time. In �gure 6’s analogy, this would be like
a waiter at the tea house reporting how long Alice
and Carol spent there. Maintaining this information
enables the simulator to honor computation time,
which may have substantial impact on communication
time. Consider, for example, how much faster the cars
in �gure 2 would move if the yellow cars were on the
road only in the morning and the red cars were on the
road only in the a�ernoon.

Even without perfectly synchronized, dri�-free
node clocks, combining physical computation time
with logical communication time enables us to ac-
curately reproduce application timing measurements
and provide some con�dence that varying hardware
parameters will lead to accurate predictions of perfor-
mance. In the following section we quantify how well
this works by presenting an early evaluation of our
simulation methodology.

Initial results

Our simulation project is still in its early stages.
However, the logical-time trace acquisition so�ware
and the simulator itself are operational and support
a su�cient set of features for an initial evaluation of
our approach.

As a sample application, we use a hydrodynamics
code developed at Los Alamos National Laboratory
called PAGOSA. PAGOSA is designed to simulate
high-speed �uid �ow and high-rate material defor-
mation [1]. �e application comprises approximately
67,000 lines of code (about 1,000 printed pages),
mostly written in Fortran but with some C. PAGOSA’s
constituent processes are logically arranged in a
three-dimensional layout and communicate primarily

with their immediate north, south, east, west, front,
and back neighbors. �is is an ideal structure for a
three-dimensional network such as the one shown
in �gure 1(c) if the application’s coordinates directly
map to the network’s coordinates. For example, map-
ping a 6 × 6 × 6 PAGOSA layout onto a 6 × 6 × 6
network could be expected to perform well. In con-
trast, mapping it onto a 6 × 4 × 9 network would in
fact make some “neighbors” not adjacent to each
other, leading to link contention. In practice, users are
rarely given control over the set of nodes allocated to
their applications.

We ran PAGOSA on 1,000 nodes of a 1,600-node
supercomputer called Mustang. Mustang is based on a
fat-tree network such as the one shown in �gure 1(b),
but 200 times larger. More precisely, �gure 1(b) repre-
sents what is o�en called a 2-ary 3-tree, because each
switch connects to two switches in each adjacent row
and there are three rows of switches. Mustang uses an
18-ary 3-treea so each switch connects to 18 switches
in each adjacent row, but there are still only three rows
in the network, just as in �gure 1(b). As of June 2013,
Mustang was rated the 137th fastest supercomputer in
the world [3].

Full-application simulation at scale

PAGOSA was con�gured to execute a canonical
hydrodynamics test problem, the simulation of a
spherical shell of beryllium being subjected from all
directions to a given amount of kinetic energy, which
compresses the shell. Figure 7 presents the results of
simulating this PAGOSA execution using the sets of
network parameters listed in table 1.

�e �rst bar, labeled Fat tree, measured, indicates
that the PAGOSA test problem normally takes an hour
and a half to complete on Mustang. �e second bar,
Fat tree, demonstrates that our simulator is quite ac-
curate, being only 6.4% above the correct value. Recall
that our work is still in its early stages; we hope in the
near future to improve simulation accuracy. �e sec-
ond and subsequent bars each represent between 14½
and 15½ hours of time running the simulator on a
single desktop computer. �is is a noteworthy success:
Even though we used a thousandth of the number of
nodes as in the real execution, our simulator took only
tenfold the time to run. And, unlike real execution,

a. Mustang in fact contains an incomplete 18-ary 3-tree—an XGFT (3; 18, 6, 16; 1 6 18) in Öhring’s notation [4]—and this is what
we simulate.

16

Predicting the performance of extreme-scale supercomputer networks

our simulator enables limitless “what if ” experimenta-
tion with di�erent network topologies and network
performance characteristics.

As a demonstration of that capability, the remain-
ing bars in �gure 7 show the results of simulating
di�erent networks from Mustang’s actual network. As
detailed in table 1, Fat tree, slow represents a substan-
tially slower network than Fat tree. 3-D torus uses the
same network speeds as Fat tree but with a 3-D torus
topology instead of a fat tree. Likewise, 3-D torus, slow
uses the same network speeds as Fat tree, slow but with
a 3-D torus topology instead of a fat tree. 3-D torus,
shu�ed represents the same topology and network
speeds as 3-D torus but randomly shu�es the mapping
of PAGOSA processes to torus nodes. Torus networks
are notoriously sensitive to process placement, and we
can use our simulation technology to evaluate how
sensitive a given application is to the placement of its
constituent processes.

�e clear implication of �gure 7 is that PAGOSA’s
overall performance is almost completely oblivi-
ous to network performance. Despite the simulated
variations in network topologies and speeds, the
di�erence in execution time from one network to
another is a tiny fraction of a percent. Although the
1,000-node run of PAGOSA communicated an ag-
gregate of two billion messages comprising a total
of 14 terabytes of data, communication time is so
dominated by computation time that network speed is
largely inconsequential.

Comparison with simplistic simulators

We have shown that �ow-based simulation delivers
simulation speed and that logical clocks provide high
�delity to actual application execution time. �e next
question to consider is how our approach compares to
the more simplistic approach employed by most net-
work-simulation studies. While our simulator honors
both communication dependencies and computation
time, it is far more typical in the simulation literature
to pretend that all messages are sent simultaneously at
time 0 and to simulate the time it takes all messages to
reach their destination in the absence of computation.

We con�gured our simulator to disregard commu-
nication dependencies and computation time, in es-
sence dumbing down our simulator to the capabilities
of a more traditional network simulator. �e results,
shown in �gure 8, paint a very di�erent picture of
performance from �gure 7.

�e total height of each bar represents the time
for the last message in the corresponding simula-
tion to complete. �e light purple region represents
the average time for a message to complete. While
�gure 7 indicates that PAGOSA’s total execution time
is almost completely independent of communication
time, �gure 8 exaggerates the di�erences. Speci�cally,

Fat tree,
measured

Fat tree Fat tree,
slow

3-D torus 3-D torus,
slow

3-D torus,
shuffled

0

1,000

2,000

3,000

4,000

5,000

6,000
Ti

m
e

(s
)

Simulation

Better

Worse

FIGURE 7. Simulated PAGOSA execution time using the sets of
network parameters in table 1.

TABLE 1. Simulation parameters

Simulation Topology Link Speed (Gbps) Switch Latency (ns) Software Overhead (ns)

Fat tree 18-ary 3-tree 40 100 1,500

Fat tree, slow 18-ary 3-tree 10 400 4,000

3-D torus 8 x 16 x 16 torus 40 100 1,500

3-D torus, slow 8 x 16 x 16 torus 10 400 4,000

3-D torus, shu�ed 8 x 16 x 16 torus 40 100 1,500

 The Next Wave | Vol. 20 No. 2 | 2013 | 17

FEATURE

Fat tree Fat tree,
slow

3-D torus,
slow

0

2

4

6

8

10

12

14

16

18

Ti
m

e
(s

) Maximum

Average

3-D torus

Better

Worse

Simulation

FIGURE 8. Di�erences in simulated communication time only.

the 3-D torus requires 70% more time than the fat tree
to transfer PAGOSA’s two billion messages. For both
network topologies, quartering the bandwidth exactly
quadruples the communication time.

�is study demonstrates that it is critical to include
communication dependencies and computation time
in a network simulation. Otherwise, di�erences in net-
work topology and basic performance characteristics
appear more signi�cant than they really are. �is mis-
leading information could persuade a supercomputing
center to pay extra for a faster network when a slower,
less expensive network may deliver almost exactly the
same performance to applications.

Conclusions

Modern supercomputers are architected as vast aggre-
gations of processors interconnected with high-speed
networks. Because scienti�c applications are generally
composed of myriad processes working together to
simulate natural phenomena, communication speed
is critical for e�ciently coordinating all of those
processes. However, engineering a high-speed net-
work involves inevitable cost/performance trade-o�s.
Furthermore, all applications use the network dif-
ferently, contraindicating a one-size-�ts-all solution.
Some applications transmit a large number of small
messages; others transmit a small number of large
messages. In some applications, each node commu-
nicates with only a small set of other nodes; in others,
all nodes communicate with all of the others. Some
applications communicate continuously throughout
their execution; others alternate communication and
computation phases.

Supercomputing centers want to maximize the
overall performance delivered to the applications they
expect to run but without overpaying for unneces-
sary network performance. One way to predict how
well a given application will perform on a particular
network in advance of its procurement is via a tech-
nique called network simulation. With simulation, one
mimics hardware’s behavior and performance charac-
teristics using a so�ware test bed. Simulating hard-
ware is slower—typically many thousands of times
slower—than running on true hardware but is cheap
to deploy and easy to modify to investigate di�erent
design alternatives.

�e problem with existing network simulators and
simulation studies is that they tend to incorporate so
much detail that they cannot handle large numbers of
nodes or substantial lengths of time. Furthermore, for
simplicity of implementation they ignore the juxta-
position of communication with computation and
with other communication, unrealistically assuming
that all messages are initiated in a single burst. In this
article we proposed addressing the speed issue with
�ow-based simulation and the realistic-usage issue
with logical clocks that are augmented with physical
computation time. To demonstrate the potential of
this approach we implemented a tool to derive logical-
time traces from parallel applications and a �ow-based
simulator to replay those traces on di�erent simu-
lated network topologies and with di�erent network
performance characteristics.

One can draw the following conclusions from the
experimental data we presented. First, our approach
accurately simulates real execution time. Although
our implementation is in its nascent stages, we already
saw less than 7% error when simulating a scienti�c
application, PAGOSA, running for an hour and a half
across a 1,000-node network. Second, �ow-based
simulation runs at reasonable speeds. We replayed that
1,000-node, hour-and-a-half run on di�erent simu-
lated networks using only a single node, and it ran
only 10 times slower than real time, not thousands or

18

Predicting the performance of extreme-scale supercomputer networks

tens of thousands, which is what is typical for a more
traditional network simulator. �ird, the common
simpli�cation of ignoring communication dependen-
cies and computation time in network simulations
exaggerates the pressure the application applies to
the network and leads to incorrect assessments of
network performance.

In our experiments, we found that PAGOSA per-
forms so much computation relative to communica-
tion that the network topology and basic performance
characteristics are largely inconsequential. In contrast,
a more traditional network simulator would incorrect-
ly claim 70% more performance for a fat-tree topology
than for a 3-D torus topology when replaying PAGO-
SA’s communication pattern.

In summary, combining logical time with �ow-
based simulation opens up new avenues for evaluating
how fast applications will run on di�erent super-
computer networks, most notably supercomputer
networks that have not yet been built. �is capability
can inform network design decisions—or even simply
a selection from multiple existing networks—to help
provide applications with the best communication
performance that the supercomputer budget allows.

About the authors

Scott Pakin is a research scientist at Los Alamos
National Laboratory. He has been actively working
in the area of high-performance network research
for over 15 years, beginning with the development
of Fast Messages, one of the �rst high-speed messag-
ing layers for a commodity supercomputing network,
Myrinet; and more recently including the Cell Messag-
ing Layer, which makes it practical for computational
accelerators to communicate directly across a deep,
heterogeneous network hierarchy; and coNCePTuaL,
a domain-speci�c language, compiler, and run-time
system that facilitate the rapid generation of custom
network speed tests with repeatable results.

Dr. Pakin has served on numerous network-related
national and international conference and workshop
program committees, including the position of area
cochair for the Architecture and Networks track of
this year’s annual Supercomputing Conference (SC’13)
and continuing cochair service for the annual Com-
munication Architecture for Scalable Systems (CASS)
workshop. He also served as a guest editor for the

November 2012 special issue of Elsevier’s Journal of
Parallel and Distributed Computing, which focused on
interconnection networks. Dr. Pakin received a BS in
mathematics/computer science with research honors
from Carnegie Mellon University in 1992, an MS in
computer science from the University of Illinois at
Urbana-Champaign in 1995, and a PhD in computer
science from the University of Illinois at Urbana-
Champaign in 2001.

Xin Yuan is a full professor in the Department of
Computer Science at Florida State University and
recently took a research sabbatical at Los Alamos Na-
tional Laboratory. His research interests include paral-
lel and distributed systems, interconnection networks,
communication optimizations, and networking. He
obtained his BS and MS degrees in computer science
from Shanghai Jiaotong University in 1989 and 1992,
respectively. He earned his PhD degree in computer
science from the University of Pittsburgh in 1998. He
publishes extensively on interconnection networks
and communication-library implementation and
optimizations.

�e Self-Tuned Adaptive Routines for Message
Passing Interface (STAR-MPI) so�ware package that
he and his students developed has been incorporated
into the so�ware stack of IBM’s Blue Gene/P super-
computer. Professor Yuan is currently serving on the
editorial boards of several international journals. He
has also served as the program chair and vice chair for
several international conferences and workshops, such
as the International Conference on Parallel Processing
(ICPP) and the Institute of Electrical and Electronics
Engineers (IEEE) International Conference on High
Performance Computing (HiPC), and as a program
committee member for many international confer-
ences and workshops. He is a senior member of both
the Association for Computing Machinery (ACM)
and IEEE.

Michael Lang is the team leader of the Ultrascale
Systems Research at Los Alamos National Laboratory.
His research interests include distributed services,
performance of large-scale systems, operating-system
and run-time issues for supercomputers, and intercon-
nects for large-scale systems. He has published work
on the application-speci�c optimization of routing on
In�niBand interconnects for large-scale systems. No-
tably, this algorithm is currently included in OpenSM
in the OpenFabrics so�ware stack. Lang was formerly

References

[1] Kothe DB, Baumgardner JR, Cerutti JH, Daly BJ, Holian
KS, Kober EM, Mosso SJ, Painter JW, Smith RD, Torrey
MD. “PAGOSA: A massively parallel, multi-material hydro-
dynamics model for three-dimensional high-speed �ow and
high-rate material deformation. In: Tentner A, editor. High
Performance Computing Symposium 1993: Grand Challenges
in Computer Simulation (Proceedings of the 1993 Simula-
tion Multiconference on the High Performance Computing
Symposium; Mar 29–Apr 1, 1993, Arlington, VA). San Di-
ego (CA): Society for Computer Simulation; 1993. p. 9–14.
ISBN: 978-1565550520.

[2] Lamport L. “Time, clocks, and the ordering of events
in a distributed system.” Communications of the ACM.
1978;21(7):558–565. doi: 10.1145/359545.359563.

[3] Meuer H, Strohmaier E, Dongarra J, Simon H. TOP500
Supercomputer Sites: June 2013 [accessed 2013 Aug 2].
Available at: http://www.top500.org/lists/2013/06.

[4] Öhring SR, Ibel M, Das SK, Mohan J K. “On generalized
fat trees.” In: Proceedings of the 9th International Parallel
Processing Symposium; Apr 1995, Santa Barbara, (CA). p.
37–44. doi: 10.1109/IPPS.1995.395911.

 The Next Wave | Vol. 20 No. 2 | 2013 | 19

a member of Los Alamos National Laboratory’s Per-
formance and Architecture team, involved in perfor-
mance analysis of new large-scale systems for the US
Department of Energy. He received a BS in computer
engineering and an MS in electrical engineering in
1988 and 1993 respectively, both from the University
of New Mexico.

Doing more with less: Cooling
computers with oil pays o�

D a v i d P r u c n a l , P E

A
consequence of doing useful work with computers is the production of heat. Every watt of
energy that goes into a computer is converted to a watt of heat that needs to be removed,
or else the computer will melt, burst into �ames, or meet some other undesirable end. Most

computer systems in data centers are cooled with air conditioning, while some high-performance
systems use contained liquid cooling systems where cooling �uid is typically piped into a cold
plate or some other heat exchanger.

Immersion cooling works by directly immersing IT equipment into a bath of cooling �uid. The
National Security Agency’s Laboratory for Physical Sciences (LPS) acquired and installed an
oil-immersion cooling system in 2012 and has evaluated its pros and cons. Cooling computer
equipment by using oil immersion can substantially reduce cooling costs; in fact, this method has
the potential to cut in half the construction costs of future data centers.

Network servers are submerged into
a tank of mineral oil. (Photo used with
permission from Green Revolution
Cooling: www.grcooling.com.)

20

 The Next Wave | Vol. 20 No. 2 | 2013 | 21

FEATURE

The fundamental problem

Before getting into the details of immersion cooling,
let’s talk about the production of heat by computers
and the challenge of e�ectively moving that heat from
a data center to the atmosphere or somewhere else
where the heat can be reused.

In order for computers to do useful work, they
require energy. �e e�ciency of the work that they do
can be measured as the ratio of the number of opera-
tions that they perform to the amount of energy that
they consume. �ere are quite a few metrics used to
measure computer energy e�ciency, but the most
basic is operations per watt (OPS/W). Optimizing this
metric has been the topic of many PhD theses and will
continue to be the subject of future dissertations. Over
the years, there has been progress against this metric,
but that progress has slowed because much of the
low-hanging fruit has been harvested and some of the
key drivers, Moore's Law and Denard scaling, have ap-
proached the limits of their bene�t. Improvements to
the OPS/W metric can still be made, but they usually
come at the expense of performance.

�e problem is not unlike miles per gallon for cars.
�e internal combustion engine is well understood
and has been optimized to the nth degree. For a given
engine, car weight, and frontal area, the gas mileage
is essentially �xed. �e only way to improve the miles
per gallon is to reduce the performance or exploit
external bene�ts. In other words, drive slower, accel-
erate less, dri� down hills, �nd a tailwind, etc. Even
a�er doing all of these things, the improvement in gas
mileage is only marginal. So it is, too, with comput-
ers. Processor clock frequencies and voltages can be
reduced, sleep modes can be used, memory accesses
and communications can be juggled to amortize their
energy costs, but even with all of this, the improve-
ment in OPS/W is limited.

A natural consequence of doing useful work with
computers is the production of heat. Every watt of en-
ergy that goes into a computer is converted into a watt
of heat that needs to be removed from the computer,
or else it will melt, burst into �ames, or meet some
other undesirable end. Another metric, which until
recently was less researched than OPS/W, is kilowatts
per ton (kW/ton), which has nothing to do with the
weight of the computer system that is using up the

energy. Here, ton refers to an amount of air condi-
tioning; hence, kW/ton has to do with the amount of
energy used to expel the heat that the computer gener-
ates by consuming energy (see �gure 1).

In fact, many traditional data centers consume as
much energy expelling heat as they do performing
useful computation. �is is re�ected in a common
data center metric called power usage e�ectiveness
(PUE), which in its simplest form is the ratio of the
power coming into a data center to the power used to
run the computers inside. A data center with a PUE
of 2.0 uses as much power to support cooling, light-
ing, and miscellaneous loads as it does powering the
computers. Of these other loads, cooling is by far the
dominant component. So, another way to improve
data center e�ciency is to improve cooling e�ciency.
�e best case scenario would be to achieve a PUE of
1.0. One way to achieve this would be to build a data
center in a location where the environmental condi-
tions allow for free cooling. Some commercial compa-
nies have taken this approach and built data centers in
northern latitudes with walls that can be opened to let
in outside air to cool the computers when the outside
temperature and humidity are within allowable limits.
However, for those of us who are tied to the mid-
Atlantic region where summers are typically hot and
humid, year-round free cooling is not a viable option.
How can data centers in this type of environment
improve their kW/ton and PUE?

Heat

CoolingPower

Useful computation

kW/ton

OPS/W

Compute

node

Operating expense:

Energy used to make

and circulate cold air

Capital expense:

Infrastructure required

to make and circulate

cold air

FIGURE 1. There are two halves to the computer power
e�ciency problem: e�ciency of the actual computation (green
sector) and e�ciency of the cooling infrastructure (blue sector).

22

Doing more with less: Cooling computers with oil pays o�

How computers are cooled

�ere are many di�erent ways that computers are kept
cool in data centers today; however, the most common
method is to circulate cool air through the chassis of
the computer. Anyone who has ever turned on a com-
puter knows that the computer makes noise when it is
powered on. Central processing units (CPUs), mem-
ory, and any other solid-state components are com-
pletely silent, so what makes the noise? Spinning disk
drives can make a little noise, but by far, the dominant
noisemakers are the fans that are used to keep air
moving across the solid-state devices that are all bus-
ily doing work and converting electrical power input
into computation and heat. Even the power supply in
a computer has a fan because the simple act of con-
verting the incoming alternating current (ac) power
to usable direct current (dc) power and stepping that
power down to a voltage that is usable by the comput-
er creates heat. All of the fans in a computer require
power to run, and because they are not perfectly
e�cient, they too create a little heat when they run.
�e power used to run these fans is usually counted as
computer load, so it ends up in the denominator of the
PUE calculation, even though it does nothing toward
actual computation.

But how do all of these fans actually cool the
computer? �ink of cooling as heat transfer. In other
words, when an object is cooled, heat is transferred
away from that object. What do people do when they
burn their �nger? �ey blow on it, and if they are near
a sink, they run cold water on it. In both cases they are
actually transferring heat away from their burnt �nger.
By blowing, they are using air to push heat away from
their �nger, and by running water, they are immers-
ing their hot �nger in a cool �uid that is absorbing
and carrying the heat away. Anyone who has burned a
�nger knows that cold water brings much more relief
than hot breath. But why? �e answer depends on
principles like thermal conductivity and heat capacity
of �uids. It also helps to understand how heat moves.

Heat on the go: Radiation, conduction,
convection, and advection

Imagine a camp�re on a cool evening. �e heat from
the �re can be used to keep warm and to roast marsh-
mallows, but how does the heat move from the �re?
�ere are three modes of heat transfer at work around

a camp�re: radiation, conduction, and convection
(see �gure 2). As you sit around the �re, the heat that
moves out laterally is primarily radiant heat. Now, as-
sume you have a metal poker for stirring the coals and
moving logs on the �re. If you hold the poker in the
�re too long it will start to get hot in your hand. �is
is because the metal is conducting heat from the �re to
your hand. To a much lesser extent the air around the
�re is also conducting heat from the �re to you. If you
place your hands over the �re, you will feel very warm
air rising up from the �re. �is heat transfer, which
results from the heated air rising, is convection. Now, if
an external source, such as a breeze, blows across the
�re in your direction, in addition to getting smoke in
your eyes, you will feel heat in the air blowing towards
you. �is is advection. In a computer, a CPU creates
heat that is typically conducted through a heat spread-
er and then into the surrounding air. Convection
causes the air to rise from the heat spreader, where it
is then blown, or advected, away by the computer’s
cooling fan.

Now that we know how heat moves, why is it that
it feels so much better to dunk a burnt �nger in water
than to blow on it? �is is where thermal conductivity
and heat capacity of the cooling �uid come into play.
First, a few de�nitions:

 Thermal conductivity is the ability of a material
to conduct heat; it is measured in watts per meter
degree Celsius, or W/(m·°C).

 Heat capacity is the amount of heat required
to change a substance’s temperature by a given
amount or the amount of heat that a substance

Convection

Conduction

Radiation

FIGURE 2. There are three modes of heat transfer at work
around a camp�re: radiation, conduction, and convection.

 The Next Wave | Vol. 20 No. 2 | 2013 | 23

FEATURE

can absorb for a given temperature increase; it is
measured in joules per degree Celsius (J/°C).

 Speci�c heat capacity is the heat capacity per
unit mass or volume; it is typically given per
unit mass and simply called speci�c heat (C

p
); it

is measured in joules per gram degree Celsius,
or J/(g·°C).

�e answer to why it feels so much better to dunk a
burnt �nger into water than to blow on it can be found
in table 1. First, water is a much better conductor of
heat than air, by a factor of 24. �ink of it as having 24
times more bandwidth for moving heat. Second, water
can hold far more heat than air. In fact, 3,200 times
more. So, water provides 24 times more heat transfer
bandwidth and 3,200 times more heat storage than air.
No wonder the �nger feels so much better in the water.

One more thing to consider about heat transfer;
heat naturally �ows from hot to cold, and the rate of
heat transfer is proportional to the temperature di�er-
ence. �is is why the colder the water, the better that
burnt �nger is going to feel.

Cooling computers

By now it should be apparent that the fans in a com-
puter are there to advect (i.e., move) a cooling �uid
(e.g., air) across the heat producing parts (e.g., CPUs,
memories, and peripheral component intercon-
nect cards) so that the cooling �uid can absorb heat
through conduction and carry it away. �is can be de-
scribed by the following mass �ow heat transfer equa-
tion: = c

p
∆T

In this equation, is the rate of heat transfer in
watts, is the mass �ow rate of the cooling �uid in
grams per second, c

p
 is the speci�c heat of the cooling

�uid, and ∆T is the change in temperature of the cool-
ing �uid. What it says is that the cooling depends on
production of the amount of coolant �owing over the

TABLE 1. Thermal conductivity and heat capacity of common substances

Thermal Conductivity,
W/(m·°C) at 25°C

Speci�c Heat (C
p
),

J/(g·°C)
Volumetric Heat Capacity (Cv),
J/(cm3·°C)

Air 0.024 1 0.001297

Water 0.58 4.20 4.20

Mineral Oil 0.138 1.67 1.34

Aluminum 205 0.91 2.42

Copper 401 0.39 3.45

heat source, the ability of the coolant to hold heat, and
the temperature rise in the coolant as it �ows across
the heat source.

How much air does it take to keep a computer
cool? �ere is a rule of thumb used in the data center
design world that 400 cubic feet per minute (CFM)
of air is required to provide 1 ton of refrigeration.
One ton of refrigeration is de�ned as 12,000 British
thermal units per hour (Btu/h). Given that 1 kilowatt-
hour is equivalent to 3,412 British thermal units, it
can be seen that a ton of refrigeration will cool a load
of 3,517 W, or approximately 3.5 kW. �e mass �ow
heat transfer equation can be used to con�rm the rule
of thumb. Air is supplied from a computer room air
conditioning (CRAC) unit in a typical data center at
about 18°C (64°F). Now, 400 CFM of air at 18°C is
equivalent to 228 grams per second, and the speci�c
heat of air is equivalent to 1 J/(g·°C). Solving the mass
�ow heat transfer equation above with this informa-
tion yields a change in temperature of 15°C. What all
this con�rms (in Fahrenheit) is that when 64°F cool-
ing air is supplied at a rate of 400 CFM per 3.5 kW of
computer load, the exhaust air from the computers is
91°F. Anyone who has stood in the “hot aisle” directly
behind a rack of servers will know that this rule of
thumb is con�rmed.

It is not unusual for a server rack to consume over
10 kW. Using the rule of thumb above, a 10.5 kW
server rack requires 1,200 cubic feet of cooling air—
enough air to �ll a 150 square foot o�ce space with
an 8 foot ceiling—per minute. �at’s a whole lot of
air! Simply moving all of that air requires a signi�cant
amount of energy. In fact, for racks of typical one-unit
(1U) servers, the energy required to move cooling
air from the CRAC units and through the servers is
on the order of 15% of the total energy consumed by
the computers. Remember—this is just the energy to
move the cooling air, it does not include the energy
required to make the cold air.

24

Doing more with less: Cooling computers with oil pays o�

If there was a way to cool computers without
moving exorbitant quantities of air, it could reduce
energy consumption by up to 15%. �is may not seem
like much, but consider that a 15% improvement in
OPS/W is almost unheard of, and for a moderate
10 megawatt (MW) data center, a 15% reduction in
energy consumption translates into a savings of $1.5
million per year.

Pumping oil versus blowing air

Unfortunately, we cannot dunk a computer in water
like a burnt �nger since electricity and water do not
play well together. Mineral oil, on the other hand, has
been used by electric utilities to cool electrical power
distribution equipment, such as transformers and
circuit breakers, for over 100 years. Mineral oil only
has about 40% of the heat holding capacity and about
one quarter the thermal conductivity of water, but it
has one huge advantage over water—it is an electrical
insulator. �is means that electrical devices can oper-
ate while submerged in oil without shorting out.

While mineral oil does not have the heat capacity
of water, it still holds over 1,000 times more heat than
air. �is means that the server rack discussed earlier
that needed 1,200 CFM of air to keep from burning
up could be kept cool with just about 1 CFM of oil.
�e energy required to pump 1 CFM of oil is dramati-
cally less than the energy required to blow 1,200 CFM
of air. In a perfectly designed data center, where the
amount of air blown or oil pumped is matched exactly
to the heat load, the energy required to blow air is �ve
times that required to pump oil for the same amount
of heat removed. In reality, the amount of air moved
through a data center is far more than that required
to satisfy the load. �is is due to the fact that not all
of the air blown into a data center passes through a
computer before it returns to the CRAC unit. Since the
air is not ducted directly to the computers’ air intakes,
it is free to �nd its own path back to the CRAC unit,
which is frequently over, around, or otherwise not
through a server rack. As we will soon see, it is much
easier to direct the path of oil and to pump just the
right amount of oil to satisfy a given computer heat
load. �us, the energy required to circulate oil can be
more than 10 times less than the energy required to
circulate air.

Immersion cooling system

Now that we have established that mineral oil would
be a far more e�cient �uid to use for removing heat
from computers, let’s look at how a system could be
built to take advantage of this fact.

Imagine a rack of servers. Now imagine that the
rack is tipped over onto its face. Now convert the
rack into a tub full of servers. Now �ll the tub with
mineral oil.

 Figures 3 and 4 show the system that LPS acquired
and is using in its Research Park facility. �e system is
comprised of a tank �lled with mineral oil that holds
the servers and a pump module that contains an oil-
to-water heat exchanger and oil circulation pump. In
this installation, the heat exchanger is tied to the facil-
ity's chilled water loop; however, this is not a necessity,
as will be discussed later. �e oil is circulated between
the tank and the heat exchanger by a small pump.
�e pump speed is modulated to maintain a constant
temperature in the tank. �is matches the cooling
�uid supply directly to the load. �e design of the
tank interior is such that the cool oil coming from the
heat exchanger is directed so that most of it must pass
through the servers before returning to the heat ex-
changer. �e combination of pump speed modulation
and oil ducting means that the cooling �uid is used
very e�ciently. �e system only pumps the amount
needed to satisfy the load, and almost all of what is
pumped passes through the load.

�ere are three interesting side bene�ts to immer-
sion cooling in addition to its e�ciency. �e �rst is
due to the fact that the system is designed to maintain
a constant temperature inside the tank. Because the
pump is modulated to maintain a set point tempera-
ture regardless of changes in server workload, the
servers live in an isothermal environment. One of the
causes of circuit board failures is due to the mismatch
in the coe�cients of thermal expansion, or CTEs. �e
CTEs for the silicon, metal, solder, plastic, and �ber-
glass used in a circuit board are all di�erent, which
means that these materials expand and contract at
di�erent rates in response to temperature changes.
In an environment where the temperature is chang-
ing frequently due to load changes, this di�erence in
CTEs can eventually lead to mechanical failures on the

 The Next Wave | Vol. 20 No. 2 | 2013 | 25

FEATURE

circuit board. Oil immersion reduces this problem by
creating a temperature-stable environment.

�e second side bene�t is server cleanliness. Air-
cooled servers are essentially data center air cleaners.
While data centers are relatively clean environments,
there is still some dust and dirt present. Remember,
a typical server rack is drawing in a large o�ce space
full of air every minute. Any dust or dirt in that air
tends to accumulate in the chassis of the servers.

�e �nal side bene�t of immersion cooling is
silence. Immersion cooling systems make virtually
no noise. �is is not an insigni�cant bene�t, as many
modern air-cooled data centers operate near or above
the Occupational Safety and Health Administration’s
allowable limits for hearing protection.

In addition to e�cient use of cooling �uid and
the side bene�ts mentioned above, there is another
advantage to immersion cooling—server density. As
mentioned earlier, a typical air-cooled server rack
consumes about 10 kW. In some carefully engineered
HPC racks, 15–20 kW of load can be cooled with air.

In comparison, the standard o�-the-shelf immer-
sion cooling system shown in �gure 3 is rated to hold
30 kW of server load with no special engineering or
operating considerations.

Doing more with less

Let’s take a look at how immersion cooling can
enable more computation using less energy
and infrastructure.

Air cooling infrastructure

Cooling air is typically supplied in a computer room
with CRAC units. CRAC units sit on the computer
room raised �oor and blow cold air into the under-
�oor plenum. �is cold air then enters the computer
room through perforated �oor tiles that are placed in
front of racks of computers. Warm exhaust air from
the computers then travels back to the top of the
CRAC units where it is drawn in, cooled, and blown
back under the �oor. In order to cool the air, CRAC
units typically use a chilled-water coil, which means
that the computer room needs a source of chilled
water. �e chilled water (usually 45–55°F) is supplied
by the data center chiller plant. Finally, the computer
room heat is exhausted to the atmosphere outside usu-
ally via evaporative cooling towers.

FIGURE 3. The immersion cooling system at the Laboratory for
Physical Sciences, like the one pictured above, uses mineral oil
to cool IT equipment. (Photo used with permission from Green
Revolution Cooling: www.grcooling.com.)

FIGURE 4. Network servers are submerged into a tank of min-
eral oil and hooked up to a pump that circulates the oil. (Photo
used with permission from Green Revolution Cooling: www.
grcooling.com.)

26

Doing more with less: Cooling computers with oil pays o�

Oil-immersion systems also need to expel heat,
and one way is through the use of an oil-to-water heat
exchanger; this means that oil-immersion systems, like
CRAC units, need a source of cooling water. �e big
di�erence however is that CRAC units need 45–55°F
water; whereas, oil-immersion systems can operate
with cooling water as warm as 85°F. Cooling towers
alone, even in August in the mid-Atlantic area, can
supply 85°F water without using power-hungry chill-
ers. Because oil-immersion systems can function with
warm cooling water, they can take advantage of vari-
ous passive heat sinks, including radiators, geothermal
wells, or nearby bodies of water.

�e takeaway here is that there is a signi�cant
amount of expensive, energy-hungry infrastructure
required to make and distribute cold air to keep com-
puters in a data center cool. Much of this infrastruc-
ture is not required for immersion cooling.

Fan power

One of the primary bene�ts of immersion cooling is
the removal of cooling fans from the data center. Not
only are the energy savings that result from the remov-
al of cooling fans signi�cant, they are compounded
by potentially removing the necessity for CRAC units
and chillers.

Cooling fans in a typical 1U rack-mounted server
consume roughly 10% of the power used by the server.
Servers that are cooled in an oil-immersion system do
not require cooling fans. �is fact alone means that
immersion cooling requires approximately 10% less
energy than air cooling. Internal server fans, however,
are not the only fans required for air-cooled comput-
ers. CRAC unit fans are also necessary in order to dis-
tribute cold air throughout the data center and present
it to the inlet side of the server racks.

�is CRAC unit fan power must be considered
when determining the actual fan-power savings that
can be realized by immersion cooling systems. Table 2

compares the power required to move 1 W of exhaust
heat into a data center’s chilled water loop for fan-
blown air cooling versus pump-driven oil-immersion
cooling. �e third column shows this power as a
percentage of IT technical load. It shows that the
power required to run all fans in an air-cooled sys-
tem is equal to 13% of the technical load that is being
cooled. �is is contrasted with the power required
to run pumps in an oil-immersion cooling system,
which is equal to 2.5% of the technical load that is
being cooled. �e di�erence, 10.5%, represents the
net fan-power savings achieved by switching from
an air-cooled to immersion-cooled data center. �is
analysis assumes that in both the air-cooled and
immersion-cooled cases, the cooling infrastructure is
matched exactly to the load. �e last column in table
2 uses a similar analysis but assumes that the cooling
infrastructure capacity is provisioned at twice the load.
It shows that overprovisioned fan power grows faster
than overprovisioned pump power. �is is further il-
lustrated in �gure 5.

Lower operating expenses

Table 3 compares the fan power versus pump power
required to serve a 1 MW technical load, assuming
the cooling infrastructure is sized to serve 150% of the
load. It shows that the fan power to circulate cold air
exceeds the pump power to circulate oil by 158 kW
per megawatt of technical load. At one million dollars
per megawatt-year, this equates to $158,000 a year
in additional cooling energy operating expense. �is
represents the savings due solely to circulating cooling
�uid. When the cost of making cold air is considered,
the energy savings of immersion cooling becomes
much more signi�cant.

Table 4 summarizes the energy required for air
cooling that is not needed for immersion cooling. �e
values in Table 4 are typical for reasonably e�cient
data centers.

TABLE 2. Power usage for air-cooled versus immersion-cooled data centers

Method of Cooling Power Required to Move 1W
of Waste Heat into Chilled
Water Loop (W)

Percentage of Technical
Load to Power Fan or Pump
(at 100%)

Percentage of Technical
Load to Power Fan or
Pump (at 200%)

Fan-Powered Air 0.13 W 13% 26%

Pump-Powered Oil Immersion 0.025 W 2.5% 5%

Net savings due to fan removal 10.5% 21%

 The Next Wave | Vol. 20 No. 2 | 2013 | 27

FEATURE

0%

5%

10%

15%

20%

25%

30%

100% 120% 140% 160% 180% 200%

Fan-Powered Air

Pump-Powered Oil

Po
w

er
 U

sa
ge

Installed Fan/Pump Capacity

Power savings
due to server
fan removal

FIGURE 5. The power required to run the fans in an air-cooled
data center (purple line) accounts for about 13% of the center’s
technical load (26% if run at twice the technical load); whereas,
the power required to run the pumps in an immersion-cooled
data center (green line) accounts for about 2.5% of the center’s
technical load (5% if run at twice the technical load). As is illus-
trated, overprovisioned fan power grows faster than overprovi-
sioned pump power.

TABLE 3. Power usage for air-cooled versus immersion-cooled data centers with 1 MW of technical load

Method of Cooling Fan or Pump Power as a Percentage of
Technical Load (at 150% capacity)

Total Power (at 150% capacity)

Fan-Powered Air 19.5% 1.195 MW

Pump-Powered Oil Immersion 3.75% 1.0375 MW

Delta 158 kW

One ton of refrigeration will cool approximately
3,500 W of technical load; therefore, 1 MW of techni-
cal load requires a minimum of 285 tons of refrigera-
tion. At 2.1 kW/ton, the air-cooled data center cooling
infrastructure consumes about 600 kW to cool 1 MW
worth of technical load. �is equates to $600,000 per
year per megawatt of technical load. Almost all of this
energy cost can be eliminated by immersion cool-
ing since chillers, CRAC units, and server fans are
not required.

Lower capital expenses

Immersion cooling requires far less infrastructure
than air cooling; therefore, building data centers
dedicated to immersion cooling is substantially
less expensive.

TABLE 4. Power usage of cooling equipment in air-cooled
data centers

Cooling Equipment Power Usage (kW/ton)

Chillers 0.7 kW/ton

CRAC Units 1.1 kW/ton

Server Fans 0.2 kW/ton

Total 2.1 kW/ton

Cooling infrastructure accounts for a major portion
of data center construction costs. In high reliability/
availability data centers, it is not uncommon for the
cooling infrastructure to account for half of the overall
construction cost. According to the American Power
Conversion Data Center Capital Cost Calculator, cool-
ing infrastructure accounts for at least 43% of data
center construction cost.

For large data centers, where the technical load is in
the neighborhood of 60 MW, construction costs can
approach one billion dollars. �is means that about
500 million dollars is being spent on cooling infra-
structure per data center. Since immersion-cooled
systems do not require chillers, CRAC units, raised
�ooring, and temperature and humidity controls, etc.,
they o�er a substantial reduction in capital expendi-
tures over air-cooled systems.

Immersion cooling FAQs

Several recurring questions have emerged over the
many tours and demonstrations of the LPS immersion
cooling system. Here are answers to these frequently
asked questions.

Q. What server modi�cations are required
for immersion?

�ere are three modi�cations that are typically
required including:

1. Removing the cooling fans. Since some power
supplies will shut down upon loss of cooling,

28

Doing more with less: Cooling computers with oil pays o�

a small emulator is installed to trick the power
supply into thinking the fan is still there.

2. Sealing the hard drives. �is step is not re-
quired for solid-state drives or for newer sealed
helium-�lled drives.

3. Replacing the thermal interface paste between
chips and heat spreaders with indium foil.

Some server vendors are already looking at provid-
ing immersion-ready servers which will be shipped
with these modi�cations already made.

Q. Are there hazards associated with the oil? (e.g.,
�re, health, spillage)

With regard to �ammability, the mineral oil is a
Class IIIB liquid with a �ammability rating of 1 on a
scale of 4. Accordingly, immersion cooling does not
require any supplemental �re suppression systems
beyond what is normally used in a data center. �e
health e�ects are negligible. �e oil is essentially the
same as baby oil.

Spills and leaks are considered a low probability;
however, for large installations, some form of spill
containment is recommended. Spill decks, berms,
curbs, or some other form of perimeter containment
is su�cient.

Q: How much does the system weigh?

A 42U tank fully loaded with servers and oil weighs
about 3,300 pounds, of which the oil accounts for
about 1,700 pounds. �is weight is spread over a
footprint of approximately 13 square feet for a �oor
loading of approximately 250 pounds per square foot.
A comparably loaded air-cooled server rack weighs
about 1,600 pounds with a footprint of 6 square feet,
which also translates to a �oor loading of about 250
pounds per square foot.

Q: How is the equipment serviced or repaired?

Basic services such as device and board-level
replacements are not signi�cantly di�erent than for
air-cooled equipment. Hot-swaps can be done in the
oil. For services requiring internal access, the server
can be li�ed out of the tank and placed on drainage
rails above the surface of the oil. A�er the oil drains,
component replacement is carried out the same way as
for air-cooled servers.

For rework at the circuit board level that requires
removal of the oil, there are simple methods available

to ultrasonically remove oil from circuit boards
and components.

Q: Are there other types of immersion-cooling
systems besides oil immersion?

Yes. What this article has covered is called single-
phase immersion. �at is, the oil remains in the liquid
phase throughout the cooling cycle. �ere are some
people looking into two-phase immersion-cooling
systems. In a two-phase cooling process, the cooling
liquid is boiled o�. �e resulting vapor is captured
and condensed before being recirculated. �e phase
change from liquid to gas allows for higher heat re-
moval but adds to the complexity of the system. Also,
the liquid used in two-phase systems is extremely
expensive compared to mineral oil. At this time,
there are no two-phase immersion-cooling systems
commercially available.

Conclusion

Computers consume energy and produce computation
and heat. In many data centers, the energy required
to remove the heat produced by the computers can
be nearly the same as the energy consumed perform-
ing useful computation. Energy e�ciency in the data
center can therefore be improved either by making
computation more energy e�cient or by making heat
removal more e�cient.

Immersion cooling is one way to dramatically
improve the energy e�ciency of the heat removal
process. �e operating energy required for immersion
cooling can be over 15% less than that of air cooling.
Immersion cooling can eliminate the need for infra-
structure that can account for half of the construction
cost of a data center. In addition, immersion cooling
can reduce server failures and is cleaner and quieter
than air cooling.

Immersion cooling can enable more computation
using less energy and infrastructure, and in these
times of �scal uncertainty, the path to success is all
about �nding ways to do more with less.

About the author

David Prucnal has been active as a Professional
Engineer in the �eld of power engineering for over
25 years. Prior to joining NSA, he was involved with

FEATURE

designing, building, and optimizing high-reliability
data centers. He joined the Agency as a power sys-
tems engineer 10 years ago and was one of the �rst to
recognize the power, space, and cooling problem in
high-performance computing (HPC). He moved from
facilities engineering to research to pursue solutions
to the HPC power problem from the demand side
versus the infrastructure supply side. Prucnal leads the
energy e�ciency thrust within the Agency’s Advanced
Computing Research team at the Laboratory for Phys-
ical Sciences. His current work includes power-aware
data center operation and immersion cooling. He also
oversees projects investigating single/few electron
transistors, three-dimensional chip packaging, low-
power electrical and optical interconnects, and power
e�ciency through enhanced data locality.

 The Next Wave | Vol. 20 No. 2 | 2013 | 29

30

Article title goes here unless article begins on this page. If article begins on this page, override rules and text using Ctrl + Shift.

303033303030330303030330

AAAAAAArrrrrrrrrrAAArrrAAAArArrArArrrrttitiiittitttiitttiiititiclclclclclclclclcllllccclllcclllllcllc eeeeeeeeeeeeee ee tititiiititiitiiitttiittt tttltltltlllttlltllttlltlltltleee eeeeeeeeeeeeeeeeee e gogggogoooogogogggogogggggoggooogggggggggoooooggggooggggggggggg eeseseses hhhhhhhhhh hhhhhhhhhhhhhhhhhhhhheerererereeererrereeeerrerrrrrrree eeeeeeeeeeeee eee eee uuuunununuuuuuunnuunuunuuuunnnunuunnnuuunnllleleleeleeelleeeleleleleleeeeelessssssssssss a aaaaaaaartrtrtrrtticicicicciciicciiccccleleeeleeeeleele bbbbbbbbbbbbb bbbbbbbeegegeggegggeeegegggeggeegegegggggegeggegeeeegegegeegeegeggeggggginininininininiininnnnnnininnnnnnnnninnnnninnininnnsssssssssssssssss ssssssss ononononononnnnnoononononnnnnnnononnnononnononoononononnoonononoooonnnon t ttttttttttttttt ttttttttttttttttthihiihihihihihihhhhhihhhhhhhhhiisssssssssssssssss ppapappapaaaaaapaaapapaaaaappapageggegegegeegegegegegegege.. .. IfIfIIfIfIfIfIfIfIfIfIfIfIfIfffffIff a aaaaaaa a aa a aaartrtrtrtrtttrrttrrtrtrtrtrttiicicicicciciciccciccccccicicccciccccccccclleleleeelellleleeellllleelle bbbb bbbbbbbbbbbegegegegeggeeeegeeeeeeeeeeegeegeggegegeeegeegegggegeeggeggginiinininninninnininnnnsssssssssss s onoonnnnnnoonnnnnonnnonnnnnnnnonnnn ttttttttt tttttttttttttttttttttttttttttttt thhhhhhhhhiihihhhhihhhhhiihhhihhhihiihiiihhhhiiisssssssssssssssssssssss ppapapapapaapppppappppppappappappapappappaapapp ggggggggegeegggegeeegeggg ,,,, , ovovoovovovovovvovoooooovvovvvvvovooovovoovvovoovoovoovvvoooovvvovvovovvvovveeeereereeererererereereerreeererrrereeeereerrrriirrrrrririrriririirirrrridedededeeeedededdedeee r rr r rrrrrr rr rrululuulululululululuulululuuluullululeeeesesesesseessesees a aaaa aaa aaaaaaaaaaaandnndnnddnddndnddndndndndnndndndd tttt ttt tt texexeexexexexexexexxeexxxexxxxeeeexexxxxtttttttttttttt uuuuusuuussssuuuuussusssssussuuussussssiiiinnnnninniiniinininnii ggggggggggggggggg ggggggggggg g CCCCCCCCtCtCCCCCCtCtCCCtCCCCCCC rlrlrlrrrlrlrrlrl +++++++++++++++ ++ + ++++ SSSSS SSSSSS SSSSSShihhhihihhihihhiihhhihihhhhhhh ftftftftftftftftftftfftft..

P
ower and energy use by large-scale
computing systems is a signi�cant and
growing problem. The growth of large,

centralized computing facilities is being
driven by several factors including cloud
computing, support of mobile devices, Internet
tra�c growth, and computation-intensive
applications. Classes of large-scale computing
systems include supercomputers, data centers,
and special purpose machines. Energy-e�cient
computers based on superconducting logic
may be an answer to this problem.

Energy-e�cient
superconducting computing
coming up to speed |

M a r c A . M a n h e i m e r

 The Next Wave | Vol. 20 No. 2 | 2013 | 31

FEATURE

e�ciency fast enough to keep up with increasing de-
mand for computing. Superconducting computing is
an alternative that makes use of low temperature phe-
nomena with potential advantages. Superconducting
switches based on the Josephson e�ect switch quickly
(i.e., ~1 picosecond), dissipate very little energy per
switch (i.e., less than 10-19 joules), and produce small
current pulses which travel along superconduct-
ing passive transmission lines at about one third the
speed of light with very low loss. Superconducting
computing circuits typically operate in the 4–10 kelvin
temperature range.

Earlier technologies for superconducting comput-
ing were not competitive due to the lack of adequate
cryogenic memory, interconnects between the cryo-
genic and room temperature environments capable of
high data transmission rates, and fabrication capability
for superconducting electronic circuits.

Superconducting computing

Recent developments in superconducting computing
circuits include variants with greatly improved energy
e�ciency [11]. Prospects for cryogenic memories have
also improved with the discovery of memory ele-
ments which combine some of the features of Joseph-
son junctions and magnetic random access memory
(MRAM). �e ability to operate both logic and mem-
ory within the cold environment, rather than with the
main memory out at room temperature, decreases
demands on the interconnects to room temperature to
the point that engineering solutions can be found.

Superconducting computers are being evaluated for
potential energy e�ciency bene�ts relative to conven-
tional technology. �e total bene�t of such an energy-
saving technology would scale as the number of
systems multiplied by the energy savings per system.

My group at NSA’s Laboratory for Physical Sciences
conducted a feasibility study of a range of supercon-
ducting computer systems from petascale to exas-
cale (1015–1018 �ops) for performance, computation
e�ciency, and architecture. Our results indicate that
a superconducting processor might be competitive
for supercomputing [11]. Figure 1 shows a conven-
tional computer in comparison with a conceptual
superconducting computer with the same comput-
ing performance, but much better energy e�ciency.
On the le� is Jaguar, the supercomputer that held the

Introduction

Supercomputers are also known as high-performance
or high-end systems. Information about the super-
computers on the TOP500 list is readily available [1,
2]. �e cumulative power demand of the TOP500 su-
percomputers was about 0.25 gigawatts (GW) in 2012.
�e Defense Advanced Research Projects Agency and
the Department of Energy have both put forth e�orts
to improve the energy e�ciency of supercomputers
with the goal of reaching 1 exa�ops for 20 megawatts
(MW) by 2020. �e �ops metric (i.e., �oating point
operations per second) is based on Linpack, which
uses double-precision �oating point operations, and 1
exa�ops is equivalent to 1018 �ops.

Data centers numbered roughly 500,000 worldwide
in 2011 and drew an estimated 31 GW of electric
power [3–5]. Information about data centers is harder
to �nd than that of supercomputers, as there is no
comprehensive list and much of the information is not
public. Exceptions include colocation data centers [6],
which are available for hire and include about 5% of
data centers by number, and the Open Compute Proj-
ect led by Facebook [7]. Part of the Open Compute
Project, Facebook’s �rst European data center under
construction in Lulea, Sweden will be three times
the size of its Prineville, Oregon data center, which
has been using an average of 28 MW of power [8, 9].
Facebook has been a leader in e�orts to reduce power
consumption in data centers and Lulea’s location just
below the Arctic Circle with an average temperature of
1.3°C helps with cooling, but average power usage is
still expected to exceed 50 MW.

A 2010 study by Bronk et al. projected that US data
center energy use would rise from 72 to 176 terawatt
hours (TWh) between 2009 and 2020, assuming no
constraints on energy availability [10]. �e potential
bene�t to the US of technology that reduces energy
requirements by a factor of 10 is on the order of $15
billion annually by the year 2020, assuming an energy
cost of $0.10 per kilowatt hour (kWh). Note that this
counts only the bene�t of energy savings and does
not include the potential economic bene�ts resulting
from increased data center operation or savings due to
reduced construction costs.

Conventional computing technology based on
semiconductor switching devices and normal metal
interconnects may not be able to increase energy

32

Energy-e�cient superconducting computing coming up to speed

performance record on the TOP500 list from 2009 to
2010. �e conceptual superconducting supercomputer
shown on the right is much smaller and uses much
less power (i.e., 25 kW versus over 7 MW).

Conclusion

Superconducting computing shows promise for large-
scale applications. �e technologies required to build
such computers are under development in the areas
of memories, circuit density, computer architecture,
fabrication, packaging, testing, and system integration.
�e Intelligence Advanced Research Projects Activity
(IARPA) recently initiated the Cryogenic Computing
Complexity (C3) Program with the goal of demon-
strating a scalable, energy-e�cient superconducting
computer [12]. �e results of this program should
tell us if superconducting computing can live up to
its promise.

About the author

Marc Manheimer is a physicist at NSA’s Laboratory
for Physical Sciences. His research interests include
magnetic materials and devices, and cryogenic phe-
nomena, devices, and systems. He recently became
interested in superconducting computing as a solution
to the power-space-cooling problem facing supercom-
puting. Manheimer is currently serving as the pro-
gram manager for the new C3 program at IARPA.

References

[1] TOP500. Available at:
http://www.top500.org.

[2] �e Green500. Available
at: http://www.green500.org.

[3] Koomey JG. “World-
wide electricity used in data
centers.” Environmental
Research Letters. 2008;3(3).
doi: 101.1088/1748-
9326/3/3/034008.

[4] Koomey JG, Belady
C, Patterson M, Santos
A, Lange K-D. “Assessing
trends over time in
performance, costs, and
energy use for servers.”
2009 Aug 17. Final report
to Microso� Corporation

and Intel Corporation.
Available at: http://download.intel.com/pressroom/pdf/
servertrendsrelease.pdf.

[5] Koomey JG. “Growth in data center electricity use 2005
to 2010.” 2011 Aug 1. Oakland, CA: Analytics Press. Avail-
able at: http://www.analyticspress.com/datacenters.html.

[6] Information on collocation data centers is available at:
http://www.datacentermap.com/datacenters.html.

[7] Open Compute Project. Available at: http://www.
opencompute.org.

[8] Ritter K. “Facebook data center to be built in Sweden.”
�e Hu�ngton Post. 2011 Oct 27. Available at: http://www.
hu�ngtonpost.com/2011/10/27/facebook-data-center-
sweden_n_1034780.html.

[9] McDougall D. “Facebook keeps your photos in the
freezer: Arctic town now world data hub.” �e Sun. 2013 Jan
24. Available at: http://www.thesun.co.uk/sol/homepage/
features/4759932/New-Facebook-data-hub-freezing-
Swedish-town-Lulea.html .

[10] Bronk C, Lingamneni A, Palem K. “Innovation for sus-
tainability in information and communication technologies
(ICT).” James A. Baker III Institute for Public Policy, Rice
University. 2010 Oct 26. Available at: http://bakerinstitute.
org/publications/ITP-pub-Sustainabilityin ICT-102510.pdf.

[11] Holmes DS, Ripple AL, Manheimer MA. “Energy-
e�cient superconducting computing—power budgets and
requirements.” IEEE Transactions on Applied Superconduc-
tivity. 2013;23(3). doi: 10.1109/TASC.2013.2244634.

[12] IARPA. Cryogenic Computing Complexity (C3)
Program. Available at: http://www.iarpa.gov/Programs/sso/
C3/c3.html.

FIGURE 1. The Jaguar XT5 supercomputer at Oak Ridge National Laboratory (on left) and the
conceptual superconducting supercomputer (on right) both perform at 1.76 peta�ops, but the
Jaguar XT5 consumes over 7 MW; whereas, the superconducting one consumes 25 kW. (Jaguar
XT5 image credit: Cray Inc.)

 The Next Wave | Vol. 20 No. 2 | 2013 | 33

A brief introduction to
quantum computing |

P a u l L o p a t a

Beyond digital

Beyond digital: A brief introduction to quantum computing

34

Introduction

Computers are based on logic. �ese fundamental
rules of logic dictate the types of problems that can be
solved on a computing machine. �ese rules of logic
also determine the resources required to complete a
calculation. From the early years of computing ma-
chines to the present, the most successful computer
designs have utilized two-level digital logic. �e
amazing success of modern-day computing technol-
ogy is based on the algorithmic strengths of digital
logic paired with the stunning technological advances
of silicon complementary metal-oxide semiconductor
(CMOS) chip technology. Processor chips and mem-
ory chips built out of silicon CMOS technology have
provided a continually improving platform on which
to perform digital logic.

Despite the well-known successes of computing
machines based on digital logic, some algorithms
continue to be di�cult to perform—and some prob-
lems are intractable not only on existing machines but
on any practical digital-logic machine in the foresee-
able future! �ese intractable problems serve as both
a curse and a blessing: A curse because solutions to
many of these intractable problems have signi�cant
scienti�c and practical interest. A blessing because the
computational di�culty of these intractable problems
can serve as a safeguard for secure data storage and
secure data transmission through the use of modern
encryption schemes.

It is clear that the only algorithmic way to solve
these intractable problems is to utilize a computing
machine that is based on something other than stan-
dard digital logic.

One such path toward developing a “beyond-digital
logic” machine is in the �eld of quantum computing.
Quantum computing is still in the early stages of its
development, and most of its advances are being re-
ported from universities and basic research labs. �ree
major insights have led to the current understanding
that quantum computing technology may have a sig-
ni�cant potential for solving some of these algorithmi-
cally intractable problems:

1. Speci�c algorithms have been developed to solve
mathematical problems on a (yet-to-be-devel-
oped) quantum computer that are otherwise
intractable using standard digital logic;

2. Physical systems exist that can be used as the ba-
sic building blocks for a machine to implement
these quantum algorithms;

3. �ere are ways to e�ectively handle errors that
will inevitably occur when running an algorithm
on one of these quantum computing machines.

�is article introduces quantum computing
through a discussion of these three insights and the
technical literature that underpins this exciting and
fast-moving �eld.

Quantum algorithm discoveries

When discussing the speed of an algorithm, it is useful
to break the algorithm down to a basic set of steps, or
gate operations, that can be repeated over and over
again to complete the calculation. Once an algorithm
has been written down in terms of a �xed-gate set, all
that remains is counting up the number of gates re-
quired for a particular problem size to determine how
many resources are required to �nish the calculation.
When a problem is said to be intractable, it is because
the number of gates required to complete the calcula-
tion is so overwhelmingly large that the algorithm will
not �nish in a practical amount of time.

�e �rst quantum algorithm discovered to have a
speedup over algorithms based on digital logic came
from David Deutsch in the �rst of a series of two pa-
pers in the Proceedings of the Royal Society of London
A (from 1985 and 1989). �e algorithm Deutsch de-
vised to demonstrate this speedup over digital logic is
something of a toy problem—it involves two narrowly
de�ned classes of functions and tries to determine
whether a function falls into one or the other of these
two classes. While this toy problem has extremely
limited practical interest, it was very useful in demon-
strating that there is potential for a quantum comput-
er, based on its beyond-digital logic, to solve problems
faster than computers based on digital logic. �is
algorithmic discovery, along with the quantum circuit
formalism spelled out by David Deutsch, spurred on
further algorithm development.

Whereas Deutch’s algorithm had extremely limited
utility beyond a �rst demonstration, an algorithm
later developed by Peter Shor proved to be of more
widespread interest. What became known as Shor’s
Algorithm provides a speedup for �nding the unique

FEATURE

 The Next Wave | Vol. 20 No. 2 | 2013 | 35

prime factors of a number—a problem of historic
interest that gets extremely di�cult as the number
to be factored gets larger and larger. Shor’s Algo-
rithm for factoring remains one of the best-known
examples of a seemingly intractable problem that is
potentially solved using a quantum computer. Many
other quantum algorithms have been invented, each
for tackling some di�cult mathematics problem. (See
the further reading section for further details on the
Deutsch algorithm and Shor’s Algorithm, as well as
details on the many other algorithmic discoveries and
their advantages.)

It must be noted that not all algorithms achieve a
speedup when tackling the problem with a quantum
computer. �at is, a quantum computer will provide
an improvement on solving some problems, but will
not provide an improvement on solving all problems.
As with the other aspects of quantum computing
described below, quantum algorithm development
remains a vigorous open �eld of investigation.

Physical implementations of a
quantum computer

Building and operating devices to implement the
beyond-digital logic of quantum computing has been
the focus of intense e�ort since the early quantum al-
gorithm discoveries. A great deal of progress has been
made in several di�erent technologies toward these
goals, with many impressive early demonstrations.
�is includes demonstrating some small algorithms
with a handful of logic operations.

Demonstrating the basics of beyond-digital logic
requires exquisite control over the tiniest parts of
a physical system. At this small scale, the behavior
of these systems is described by the laws of quan-
tum physics. By utilizing a system governed by
the laws of quantum physics, beyond-digital logic
becomes possible.

Exquisite control is needed to prevent the intro-
duction of damaging noise into the system during
the control process because as noise is introduced the
rules of quantum physics that describe the behavior
of these small systems get washed out. (�is is, in
some sense, why the broader world around us is seen
to obey the everyday rules of classical physics rather
than quantum rules that dominate the behavior of

very small systems. �e jostling of the many small
systems against one another contributes to the overall
noise that washes out the quantum e�ects at a large
scale.) �e term coherence time is used in the �eld of
quantum computing to describe how long the regular
behavior of a quantum system survives before an ir-
reversible connection to the outside world sets in and
the quantum e�ects required for beyond-digital logic
are washed out.

�e �rst step in operating on a system capable of
going beyond digital logic is to identify a suitable
small subsystem that is isolated enough to have a long
coherence time but, at the same time, can be fully
controlled without introducing too much extra noise.
�ese contradictory system requirements—isolation
(for a long coherence time) and connection to the
outside world (for full control)—make the demon-
stration of beyond-digital logic such a challenge. (See
the further reading section for more details on ad-
ditional requirements on physical systems to perform
quantum logic.)

Several physical systems have been used for early
demonstrations of beyond-digital quantum logic.
�ese include the following:

 Optical and microwave operations on the
electronic and motional states of ionized atoms
trapped in radio-frequency electric traps,

 Microwave operations on superconducting
resonator circuits,

 Microwave and direct-current operations
on the spin of a single electron isolated in
a semiconductor,

 Linear and nonlinear optical operations on
single photons,

 Optical operations on electrons in quantum dots
grown into semiconductors, and

 Nuclear magnetic resonance operations on vari-
ous states of a molecular ensemble.

Each of these technologies has di�erent setup,
control, and measurement techniques. Furthermore,
each technology is at a di�erent level of develop-
ment, and the outlooks for future development vary
wildly between technologies. While impressive strides
have been made, no technology has successfully
implemented more than a handful of quantum logic

3636

Beyond digital: A brief introduction to quantum computing

operations before succumbing to its limited coherence
time. (See the further reading section for information
about recent review articles in Science Magazine that
describe several of these technologies in more detail.)

Dealing with errors in a
quantum machine

Every complex machine demonstrates unexpected
behavior. �e challenge for an engineer designing any
computing machine is to design it so that the �nal
answer at the end of an algorithm will not be wrong,
even if errors creep in along the way.

�e beyond-digital logic of quantum algorithms
requires the data to remain isolated from external dis-
turbances through the course of a calculation. �is re-
quirement imposes a di�cult restriction on any error
protection scheme that is implemented on a quantum
computing machine: How do you check for errors in a
way that does not impose a disturbance on the system
that is too great to allow for the beyond-digital logic to
be performed?

�e key insight into this problem is to couple the
small subsystem being used to perform the calcula-
tion to another small subsystem that also is capable of
performing beyond-digital quantum logic. �ese two
subsystems together can be used to cleverly encode the
data for the algorithm so that tests can be performed
on the second subsystem to check for errors on the
original subsystem. And, if done correctly, these tests
on the second subsystem will not disturb the origi-
nal subsystem too much. Furthermore, if an error is
detected, there are ways to correct this error on the
original subsystem to allow the algorithm to �nish
without corrupting the �nal result.

For this quantum error protection protocol to work:
1) the two subsystems must be encoded so that the
data remains intact while encoded, and 2) a subrou-
tine algorithm to perform on these two subsystems
must be devised that will robustly correct errors on
the original subsystem—even if an error occurs while
running this subroutine.

Several di�erent schemes have been developed that
accomplish these two requirements of quantum error
protection, some of which are the most interesting and
elegant results within the �eld of quantum comput-
ing. A serious challenge is the signi�cant overhead
required for encoding the data and performing these
subroutines. �ere is also typically a very low thresh-
old in error rates required before these schemes be-
come e�ective. No experimental groups have yet dem-
onstrated a quantum computing system of su�cient
size and quality that can successfully demonstrate the
full power of these quantum error protection schemes.
Research continues to develop encodings that �x more
errors while requiring fewer resources.

Conclusion

�e rapid growth in the �eld of quantum computing
has been a result of three key insights: discoveries of
novel quantum algorithms based on beyond-digital
logic, demonstration of physical systems capable of
implementing beyond-digital logic, and discovery of
quantum error correction. And the �eld of quantum
computing based on its beyond-digital logic remains a
fast-moving and exciting �eld of study.

About the author

Paul Lopata is a physicist at the Laboratory for
Physical Sciences in College Park, Maryland.

 The Next Wave | Vol. 20 No. 2 | 2013 | 37

FEATURE

Further reading

Introduction to quantum computing

 Nielsen MA , Chuang IL. Quantum Computa-
tion and Quantum Information. Cambridge
(UK): Cambridge University Press; 2000.
ISBN-13: 978-0521635035.

�is is a comprehensive and classic refer-
ence in quantum computing. It includes
an introduction to the mathematics
involved, algorithms, error correction,
and other topics in quantum information
theory. Chapter 7 on physical realiza-
tions is out of date, but the book clearly
lays out the physical requirements needed
for operating beyond-digital logic on a
physical system.

 Mermin ND. Quantum Computer Science.
New York: Cambridge University Press; 2007.
ISBN-13: 978-0521876582.

�is is a readable, high-quality introduc-
tion and reference. It is not as comprehen-
sive as Nielsen and Chuang, but the choice
of topics is well considered.

 Kitaev AY, Shen AH, Vyali MN. Classical and
Quantum Computation. Providence (RI):
American Mathematical Society; 2002.

�is is another nice introduction to major
results in the �eld of quantum comput-
ing. More mathematical sophistication is
expected from the reader.

Algorithmic developments

 All three books in the Introduction to quan-
tum computing section of this list contain
introductions to quantum algorithms.

 Jordan S. Quantum Algorithm Zoo [updated
2013 May 23]. Available at: http://math.nist.
gov/quantum/zoo/.

Stephen Jordan at the National Institute
of Standards and Technology maintains a
comprehensive online catalog of quantum
algorithms. �is useful resource includes
original references along with descriptions
of the algorithms.

Experimental progress

Special feature: Quantum informa-
tion processing. Science Magazine.
2013;339(6124):1163–84.

�is recent special section in Science
Magazine covers several technologies in
the �eld of experimental quantum com-
puting. It includes review articles on ion
traps, superconducting circuits, spins in
semiconductors, and topological quantum
computation. All of the articles are writ-
ten by leaders in their respective sub�eld
and include brief insights into the his-
tory, current state of art, and outlook on
future developments.

Quantum error correction

All three books in the Introduction to quan-
tum computing section of this list contain
introductions to quantum error correction.

Gaitan F. Quantum Error Correction and
Fault Tolerant Quantum Computing.
Boca Raton (FL): CRC Press; 2008. ISBN:
978-0-8493-7199-8.

�is book provides a comprehensive dis-
cussion of many of the major results in the
�eld, with a focus on stabilizer codes and
their fault tolerant operation.

38

GLOBE AT A GLANCE

The Green500 provides a ranking of the most energy-e�cient supercomputers in the world. For
decades, supercomputer performance has been synonymous with speed as measured in �oating-
point operations per second. This particular focus has led to supercomputers that consume
enormous amounts of power and require complex cooling facilities to operate. The rising cost
of power consumption has caused an extraordinary increase in the total cost of ownership
of a supercomputer. (See “Doing more with less: Cooling supercomputers with oil pays o�”

The Green500 top 10 supercomputers

Specs: Cray Appro GreenBlade GB824M,

Xeon E5-2670 8C 2.6 GHz, In�ni-

band FDR, Intel Xeon Phi 5110P

Country: US

Site: National Institute for Computa-

tional Sciences

Cores: 9,216

M�ops/W 2,449.57

Power (kW): 45.11

TOP500 Rank: 397

Specs:3 Beacon Specs: IBM BlueGene/Q, Power BQC

16C 1.6 GHz, Custom

Country: US

Site: IBM Thomas J. Watson

Research Center

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 169

Specs: IBM Blue

16C 1 6 G

5 Blue Gene/Q

Specs: IBM BlueGene/Q, Power

BQC 16C 1.6 GHz, Custom

Interconnect

Country: US

Site: Argonne National Laboratory

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 167

Specs:
6 Cetus

Specs: IBM BlueGene/Q, Power BQC

16C 1.6 GHz, Custom

Country: US

Site: University of Rochester

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 171

SpSpecs: IBM BlueGene/
10 Blue Gene/QSpecs: IBM BlueGene/Q, Power BQC 16C

1.6 GHz, Custom

Country: US

Site: Argonne National Laboratory

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 166

Specs:9 Vesta

GLOBE

 The Next Wave | Vol. 20 No. 2 | 2013 | 39

Specs: IBM BlueGene/Q, Power

BQC 16C 1.6 GHz, Custom

Interconnect

Country: Switzerland

Site: Ecole Polytechnique

Federale de Lausanne

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 168

Specs: IBM BlueG

BQC 16C 1

7 CADMOS BG/Q

Specs: Eurotech Aurora HPC 10-20,

Xeon E5-2687 W 8C 3.1 GHz,

In�niband QDR, NVIDIA K20

Country: Italy

Site: Cineca

Cores: 2,688

M�ops/W 3,208.83

Power (kW): 30.70

TOP500 Rank: 467

Specs:1Eurora

Specs: IBM BlueGene/Q, Power

BQC 16C 1.6 GHz, Custom

Interconnect

Country: Poland

Site: Interdisciplinary Centre for

Mathematical and Computa-

tional Modelling

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 170

Specs: IBM Blu

BQC 16C

8 Blue Gene/Q

Specs: Eurotech Aurora HPC 10-20,

Xeon E5-2687 W 8C 3.1 GHz,

In�niband QDR, NVIDIA K20

Country: Italy

Site: Selex ES Chieti

Cores: 2,688

M�ops/W 3,179.88

Power (kW): 31.02

TOP500 Rank: —

Specs: Eurotech

Xeon E5

2 Aurora Tigon

HPC 10 20 Specs: Adtech, ASUS ESC4000/FDR

G2, Xeon E5-2650 8C 2.0 GHz,

In�niband FDR, AMD FirePro

S10000

Country: Saudi Arabia

Site: King Abdulaziz City for Science

and Technology

Cores: 38,400

M�ops/W 2,351.10

Power (kW): 179.20

TOP500 Rank: 52

Specs:4 SANAM

for additional information on supercomputers and power consumption.) In order to increase
awareness and use of supercomputer performance metrics based on e�ciency and reliability, the
Green500 list puts a premium on energy-e�cient performance for sustainable supercomputing.
The following ranking is from June 2013; the list in its entirety as well as information about the
measurement methodology is available at www.green500.org.

LEGEND

M�ops/W Mega (i.e., million) �oating-point

operations per second per watt

kW Kilowatts (i.e., thousand watts)

40

The Green500 list of June 2013 is dominated by
heterogeneous supercomputers—those that combine
two or more types of processing elements together,
such as a traditional central processing unit (CPU)
combined with a graphical processing unit (GPU) or a
coprocessor.

Eurotech manufactured the top two supercomputers
on the list—Eurora and Aurora Tigon. Eurora, located
in Italy at Cineca, performs at 3.21 giga�ops per
watt, while Aura Tigon, located in Italy at Selex ES
Chieti, performs at 3.18 giga�ops per watt. These
supercomputers are nearly 30% more energy e�cient
than the previous top supercomputer on the Green500
list. The fastest supercomputer of June 2013—
Tianhe-2—performed at 1.9 giga�ops per watt, placing
it in the number 32 spot on the Green500 list.

“Overall, the performance of machines on the
Green500 List has increased at a higher rate than
their power consumption. That’s why the machines’
e�ciencies are going up,” says Wu Feng, founder of
the Green500. For machines built with o�-the-shelf
components, a great deal of their e�ciency gains can
be attributed to heterogeneous designs; such a design
allows these systems to keep pace and in some cases
even outpace custom systems (e.g., IBM’s Blue Gene/Q).

“While the gains at the top end of the Green500 appear
impressive, overall the improvements have been much
more modest,” says Feng (see �gure 1). “This clearly
indicates that there is still work to be done.”

The Green500 announces the most

energy-e�cient supercomputers

of June 2013

 The Next Wave | Vol. 20 No. 2 | 2013 | 41

POINTERS

FIGURE 1. The energy e�ciency of the highest-ranked supercomputers on the Green500 list (green circles) has
been improving much more rapidly than the mean (brown triangles) and the median (pink squares). For instance,
while the energy e�ciency of the greenest supercomputer improved by nearly 30%, the median improved by only
about 14%, and the mean by only about 11%.

0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

2,400

2,500

2,600

2,700

2,800

2,900

3,000

3,100

3,200

3,300

11/2007

N=1

Mean

Median

N=500

M
eg

a�
op

s
pe

r w
at

t

Date

02/2008 06/2008 11/2008 06/2009 11/2009 06/2010 11/2010 06/2011 11/2011 06/2012 11/2012 06/2013

3,208.83
M�ops/W

490.20
M�ops/W

250.18
M�ops/W

42.33
M�ops/W

SPIN UTS
News from the Technology Transfer Program

Novel methods for
manufacturing photonic

logic devices

42

Traditional integrated electronic components
have not kept pace with the performance
demands of applications such as high-speed

encryption, video on demand, and broadband
television. Because optoelectronics (integrated
photonics) promise to deliver greater speed and
bandwidth than their electronic counterparts, some
experts anticipate that they could one day make
traditional electronic semiconductors obsolete.
�e widespread adoption of optical switching
has increased pressure on industry to create
fully photonic components to replace traditional
electronic devices.

Even though research on photonic logic devices
has been ongoing for several years, an integrated
photonic device that could rival today’s integrated
electronic circuit does not yet exist. In particular, the
ability to easily manufacture laser based devices and
waveguides at the microcircuit level has presented
challenges in the wafer fabrication stage. One
speci�c issue has been the ability to develop optical
interfaces, such as laser to waveguide, that do not
have impedance mismatches.

NSA engineers within the Trusted Systems
Research group in the Research Directorate took on
the challenge. �eir research resulted in methods to
precisely manufacture photonics devices that use air
gaps to tune the re�ectance between optical devices

(e.g., �gure 1). �ese air gaps are formed by making
a wafer mask with very precise regions that allow
the deposition of sacri�cial material onto the wafer
forming spacers. �is material is removed later by
chemical etching processes. Engineers can now adjust
the re�ectance by varying the sacri�cial spacer layers.

Another challenge facing photonic device
developers is the specialized equipment required
to manufacture sacri�cial layers within a wafer.
Working with the Laboratory for Physical Sciences
(LPS), NSA engineers were able to develop methods
of producing photonic devices using standard wafer
manufacturing equipment such as Plasma Enhanced
Chemical Vapor Deposition (PECVD) and later
Biased Target Ion Beam Deposition (BTIBD). �ese
novel methods opened up the potential for even more
advanced devices since custom or highly specialized
manufacturing equipment is not required. Another
key to this technology is LPS’s Projection Lithography
Stepper tool (see �gure 2) which projects the circuit
image onto the wafer.

In late 2011, NSA’s Technology Transfer Program
(TTP) licensed 16 patented photonics manufacturing
methods to industry. �is technology transfer was
one of the largest bundled patent deals in the history
of TTP and reemphasized the commitment of NSA to
return taxpayer-funded research and technology back
to private industry.

 The Next Wave | Vol. 20 No. 2 | 2013 | 43

Single output facet ready

for thin-�lm deposition

Etched trenches for dual

output waveguides

Etched trenches for single

ouput waveguide

Etched trenches for

input waveguides

Direction of light

propagation

MTD Photonic Logic Device

FIGURE 1. An image of a fabricated mode transition-
discrimination (MTD) photonic logic device with semiconductor
laser edged facets and etched waveguide trenches.

FIGURE 2. LPS's Projection
Lithography Stepper tool.

Defending Our Nation. Securing �e Future

National Security Agency Central Security Service

