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“End of the road for Roadrunner” Los Alamos 

National Laboratory, March 29, 2013.a

Five years after becoming the fastest 

supercomputer in the world, Roadrunner was 

decommissioned by the Los Alamos National Lab 

on March 31, 2013. It was the �rst supercomputer 

to reach the peta�op barrier—one million billion 

calculations per second. In addition, Roadrunner’s 

unique design combined two di�erent kinds 

of processors, making it the �rst “hybrid” 

supercomputer. And it still held the number 22 spot 

on the TOP500 list when it was turned o�. 

Essentially, Roadrunner became too power 

ine�cient for Los Alamos to keep running. As 

of November 2012, Roadrunner required 2,345 

kilowatts to hit 1.042 peta�ops or 444 mega�ops 

per watt. In contrast, Oak Ridge National 

Laboratory’s Titan, which was number one on the 

November 2012 TOP500 list, was 18 times faster yet 

�ve times more e�cient. 

In addition, data-intensive applications for 

supercomputers are becoming increasingly 

important. According to the developers of the 

Graph500 benchmarks, these data-intensive 

applications are “ill-suited for platforms designed for 

3D physics simulations,” the very purpose for which 

Roadrunner was designed. New supercomputer 

architectures and software systems must be 

designed to support such applications. 

These questions of power e�ciency and 

changing computational models are at the core 

of moving supercomputers toward exascale 

computing, which industry experts estimate will 

occur sometime between 2020 and 2030. They are 

also the questions that are addressed in this issue of 

The Next Wave (TNW). 

Look for articles on emerging technologies in 

supercomputing centers and the development 

of new supercomputer architectures, as well as a 

brief introduction to quantum computing. While 

this column takes the reader to the recent past 

of supercomputing, the remainder of the issue 

will propel you “beyond digital” to the future of 

advanced computing systems.
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I
nformation has become a key currency and 
driving force in modern society. Keeping 
our leaders apprised of the most current 

information enables them to make the decisions 
essential to keep our country safe. The National 
Security Agency’s reputation as the “nation’s 
guardian” relies heavily on the �ow of information, 
all of which is handled by an awe-inspiring array 
of computers and networks. Some of the problems 
encountered by NSA require a special breed of 
machines known as high-performance computers or 
supercomputers. Employing these powerful machines 
comes with a considerable price tag to the US government. 
When acquiring supercomputers, decision makers need to 
have a degree of con�dence that a new computer will be 
suitable, even in cases when the machine does not yet exist. 
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De�ning the future with modeling, simulation, and emulation

What is a 
supercomputer?

Although supercomputers 
are unique, custom-built 
machines, they fundamen-
tally share the design of 
the computers you use at 
home—a processor (i.e., 
a central processing unit 
or CPU), small and fast 
memory (i.e., random-
access memory or RAM), 
storage (i.e., hard disk 
drive/CD/DVD), and a 
network to communicate 
with other computers. A 
typical high-performance 
computing (HPC) system 
could be considered a per-
sonal computer on a much 
grander scale, with tens 
of thousands of proces-
sors, terabytes (i.e., trillions of bytes) of memory, and 
petabytes (i.e., quadrillions of bytes) of storage (see 
�gure 1). High-performance computers can readily �ll 
a large room, if not a whole building, have customized 
cooling infrastructure, use enough electricity to power 
a small town, and take an act of Congress to purchase. 
Such an investment is not made without a great deal of 
study and thought.

Simulating a supercomputer 

Although HPC technology is not unique to NSA, the 
specialized problems faced by the Agency can neces-
sitate unique customizations. Because NSA’s applica-
tions and so�ware are o�en classi�ed, they cannot be 
shared with the architects and engineers developing 
supercomputers. At the same time, an investment of 
this magnitude requires con�dence that a proposed 
system will o�er the performance sought. 

Currently, benchmarks, simpli�ed unclassi�ed 
so�ware that exercises important attributes of a com-
puter system, are developed and used to evaluate the 
performance of potential computing system hardware. 
However, these benchmarks may not paint the com-
plete picture. To better understand this problem, there 

is substantial value to the construction of a model. 
Architects, engineers, and scientists have a long his-
tory of building models to study complex objects, such 
as buildings, bridges, and aircra�s. 

A new team—the Modeling, Simulation, and Emu-
lation (MSE) team—within the Laboratory of Physi-
cal Science’s Advanced Computing Systems Research 
Program [1] has been assembled to address this gap 
between classi�ed so�ware, which cannot be distrib-
uted to vendors, and the vendors’ hardware systems, 
which have not been purchased by NSA. As an addi-
tional twist, the proposed hardware may be built from 
prototype components such as the hybrid memory 
cube (HMC; see �gure 2), a three dimensional stacked 
memory device designed by a consortium of industry 
leaders and researchers [2]. �e core objectives of the 
MSE team include exploration of system architectures, 
analysis of emerging technologies, and analysis of 
optimization techniques.

Owners of HPC systems desire a computer that is 
in�nitely fast, has in�nite memory, takes up no space, 
and requires no energy. None of these attributes are 
truly realizable, and when considering a practical HPC 
system, trade-o�s must be considered. When analyz-
ing a prospective HPC system, four primary metrics 
are customarily considered: �nancial cost, system 
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FIGURE 1. A high-performance computer is like a personal computer on a much grander scale—
it has tens of thousands of processors, terabytes of memory, and petabytes of storage.
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resilience, time-to-solution, and energy e�ciency. 
�ese metrics are interdependent. For example, in-
creasing the speed of an HPC system will increase the 
amount of power it consumes and ultimately increase 
the cost necessary to operate it. In order to measure 
these metrics, one could build the system and test it. 
However, this would be extremely expensive and dif-
�cult to optimize. A model simulating the computer 
can be developed in far less time, and design param-
eters can be adjusted in so�ware to achieve the desired 
balance of power, performance, reliability, and cost.

Any simulation or model of a computer should ad-
dress the metrics listed above. If any are not addressed, 
then the model could yield incomplete results because 
optimizing for fewer than all relevant variables poten-
tially leads to non-global extrema. Many scalar bench-
marks, for example the TOP500 and the Graph500, 
focus exclusively on one characteristic, like time-to-
solution, to the neglect of the other parameters of 
interest. �e MSE team is collaborating to evangelize 
a more balanced approach to multiple facets of HPC 
system characterization, assuring an optimal solution 
to the Agency’s needs. 

�e use of benchmarking so�ware allows for a 
more comprehensive evaluation of a proposed com-
puter architecture’s performance. �is enables HPC 
system architects to better target their designs to serve 
NSA’s needs. Simply stated, NSA has to work within 
budgetary and power (i.e., electricity) constraints, 
and it is vital to maximize the return on investment of 
money and time.

While this description is somewhat generic to all 
HPC system purchasers, NSA is willing to build spe-
cial purpose hardware devices and to employ specially 
developed programming languages if a cost-bene�t 
analysis demonstrates noteworthy bene�ts. Unlike 
developers in the scienti�c community whose exper-
tise usually does not span science, computer program-
ming, and computer architecture, developers at NSA 
access and understand the full so�ware and hardware 
stack—algorithm, source code, processors, memory, 
network topology, and system architecture. Compute 
e�ciency is o�en lost in the process of separating 
these abstraction layers; as a result, NSA makes an ef-
fort to comprehend the full solution. 

�is approach to mission work is re�ected in the 
work of the MSE team. A simulation or model should 

take a holistic approach, targeting the network, CPU, 
memory hierarchy, and accelerators (e.g., a graphics 
processing unit or �eld-programmable gate array). 
Multiple levels of detail for a simulation are required 
to accomplish this. A simulation may be compute-
cycle or functionally accurate; it may range from an 
abstract model to a hardware simulation including 
device physics.

Simulation technology

To accomplish the objective of enabling HPC system 
simulation within NSA, the MSE group carried out a 
survey of existing simulators from academia, industry, 
and national labs. Although many simulators exist for 
HPC systems, few attempt to model a complete archi-
tecture. �ere have been previous e�orts like Univer-
sity of California, Los Angeles’s POEMS and Hewlett 
Packard’s COTSon, but these projects are no longer 
actively supported. Two simulation frameworks, the 
Structural Simulation Toolkit (SST; see �gure 3) [3] 
from Sandia National Laboratories and Manifold from 
Georgia Institute of Technology represent today’s 
most promising candidates. Additionally, NSA re-
searchers have been cra�ing simulation tools which 
are also being considered for application in the HPC 
problem space. 

FIGURE 2. NSA collaborated with the University of Maryland 
and Micron to develop a simulation tool for Micron's Hybrid 
Memory Cube that is helping to advance supercomputing 
applications. Micron now is sampling the three-dimensional 
package that combines logic and memory functions onto a 
single chip.
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Both SST and Manifold use component simula-
tors to construct a larger-scale system. For example, 
SST can use the gem5 [4] CPU simulator along with 
the University of Maryland’s DRAMSim2 to capture 
performance characterization of processor to memory 
latency and bandwidth. Since simulating a full-scale 
HPC system would require an even larger supercom-
puter to run in a reasonable time, SST breaks the 
simulation into two components: SST/micro, a node-
level simulation (e.g., CPU, memory), and SST/macro, 
which handles network communication between 
nodes. With the emerging HMC memory technol-
ogy, the MSE team is making plans to employ the SST 
family of tools to extensively model an HPC system 
and gain perspective on its potential capabilities. �is 
will place NSA’s HPC programs on the leading edge 
in understanding the application potential for this 
new technology. 

At this time, SST/micro is capable of simulating 
the execution of programs in a single processor core 
and of monitoring the application’s use of the simu-
lated CPU and memory. By 2014, the development 
team at Sandia plans on parallelizing the simulation, 
enabling multiple processor cores to be simultaneously 
simulated. �is would allow parallel applications (i.e., 
so�ware designed to simultaneously run on multiple 
processor cores) to be run in a realistic compute node 
con�guration (i.e., multiple cores concurrently ac-
cessing the same memory hierarchy) while potentially 
reducing the time needed to complete a simulation. 

SST/macro, combined with NSA’s benchmarking 
so�ware, has already been used to demonstrate how 
di�erent network topologies, used to connect an HPC 
system’s processing cores, can a�ect the time-to-solu-
tion metric. SST/macro allowed researchers to specify 
data-routing algorithms used in the network con�gu-
ration and to study how a modi�ed network topology 
serves to optimize the performance of a system. �e 
clear bene�t of this research is in the ability to enable 
application and network codesign to create an optimal 
and cost-e�ective architecture. 

�e SST and its counterpart, Manifold, are being 
actively developed and are useful for research, but they 
are not yet ready for use as decision-making tools by 
NSA. �e MSE team is actively collaborating with San-
dia and the Georgia Institute of Technology, providing 
feedback, guidance, and assistance to the simulation 
framework developers. Multiple other national labs, 
academic researchers, and vendors are also partici-
pating in the e�ort driven by the MSE team. Other 
potential applications for simulation techniques could 
be codesign of so�ware before the actual hardware is 
available, so�ware performance analysis/optimization, 
and debugging of so�ware.  

About the authors

Noel Wheeler is the lead of the Modeling, Simulation, 
and Emulation (MSE) team in the Advanced Comput-
ing Systems group at NSA’s Laboratory of Physical 
Sciences. Ben Payne, PhD, is a physicist working as a 
postdoctoral researcher for the MSE team.
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FIGURE 3. Sandia National Laboratories’ Structural Simulation 
Toolkit is one of today’s most promising high-performance 
computing system simulators.
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Predicting the performance of 
extreme-scale supercomputer 
networks  |

A 
modern supercomputer is the Internet in a microcosm, with tens of thousands of nodes—
computers not much di�erent from the one you may be using to read this article—all 
hooked together via a high-speed network. However, while computers on the Internet 

operate largely independently of each other, supercomputers regularly harness the power of 
thousands to many tens of thousands of nodes at once to run a single application signi�cantly 
faster than any lone computer could. Coordinating the e�orts of so many nodes requires massive 
amounts of communication, making the design of the interconnection network critical to the 
performance of the supercomputer as a whole. 

In this article we present technology we are developing to predict the impact of various network-
design alternatives on the overall performance of supercomputing applications before the 
supercomputer is even built. This is important because a large supercomputer can easily cost 
tens to hundreds of millions of dollars (and in the case of Japan’s K supercomputer, over a billion 
dollars). Being able to evaluate network technologies during their design phase helps ensure that 
the supercomputer will provide as much performance as possible to applications. 
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Predicting the performance of extreme-scale supercomputer networks

Network topologies

Supercomputers gain their performance edge from 
parallelism, the ability to perform many pieces of 
work at the same time. Taking advantage of a super-
computer consequently requires an application to 
divide up the work it has to perform into small chunks 
that can be spread over a supercomputer’s nodes. In 
practice, some of these chunks of work depend on 
other chunks. 

Consider, for example, an arithmetic expression 
such as (5+5)×(6+8). �e two sums can be computed 
concurrently, but the product cannot be computed 
until a�er both sums have been computed. �is neces-
sitates communication, commonly taking the form 
of inter-node messages sent over a communication 
network. �e node computing one sum has to tell 
the other node when it has �nished and what sum it 
computed so the latter node can perform the multipli-
cation. (Alternatively, both nodes can communicate 
their sum to a third node, which can multiply the two 
sums.) Network speed is critical to application perfor-
mance. If the network is too slow relative to the time 
spent in computation, which is likely the case for our 
simple arithmetic example, there will be no perfor-
mance gain to be had from parallelism, and the super-
computer’s performance capabilities will be wasted. 

While the Internet is composed of a motley con-
nection of subnetworks haphazardly linked together, 
supercomputer networks gain some of their speed 
advantage by exploiting homogeneous hardware ar-
ranged into regular patterns. �is avoids some nodes 
lying in the boondocks of the network and slowing 
down the entire application whenever distant nodes 
need to communicate with them. Figure 1 illustrates 
three topologies out of endless possibilities. Contrast 
the irregular structure of �gure 1(a), which illustrates 
the graph nature of the Internet’s topology, with the 
symmetry in each of �gures 1(b) and (c), which il-
lustrate two common supercomputer topologies: a fat 
tree and a three-dimensional torus (i.e., 3-D torus). 

Nodes in the �gure are shown as blue spheres. 
(Each of a modern supercomputer’s nodes typically 
contains 10–100 processor cores, making a node a 
powerful computer in its own right.) Network links 
are portrayed in the �gure as lavender tubes and 
switches are portrayed as salmon-colored boxes. A 
switch receives data on one link and, based on where 
the data is to be delivered, sends it out on another link. 

FIGURE 1. Three examples of network topologies. Figure (a) 
shows an example of a small-world network topology. Figure 
(b), which depicts a fat tree, and �gure (c), which depicts a 3-D 
torus, are two common supercomputer network topologies. 

(a)

(b)

(c)
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For example, if the le�most node in the fat tree de-
picted by �gure 1(b) needed to communicate with the 
rightmost node, it could send data to the switch above 
it, which could forward the data to the switch above 
it and then to the switch above it. �e topmost switch 
could then forward the data diagonally down and to 
the right, then diagonally down and to the right again, 
and �nally down to the destination node. 

An alternative route would be to start with a couple 
of diagonally upward-and-rightward hops followed 
by vertically downward hops. (As an exercise, see 
if you can �nd a third path from the le�most node 
to the rightmost node. Are there any more routes?) 
We use the term routing algorithm to describe the 
process by which switches select one route among 
the alternatives. 

�e importance of a topology such as a fat tree 
is that there are multiple ways to get from any node 
to any other node. Hence, if one route is congested, 
data can proceed along a di�erent route. Consider 
an analogy to cars and roads, with cars represent-
ing data, roads representing links, and intersections 
representing switches. �e more roads connecting a 
residential neighborhood to a commercial district, the 
less tra�c is likely to appear on any given road. At the 
extreme, one could connect every node to every other 
node in a supercomputer to eliminate all congestion. 
In practice, this is not done for the same reason that 
there are not private roads connecting every house to 
every other house in a town—cost. Switches and links 
are expensive; hence, a network designer must simul-
taneously minimize the number of switches and links 
while maximizing the number of alternative routes 
between pairs of nodes. A 10,000 node supercomputer 
with all-to-all connectivity would require one hundred 
million links. At even a dollar apiece (an unrealisti-
cally small amount), this would dominate the cost of 
the supercomputer. 

Figure 1(c) illustrates a 3-D torus, another com-
mon supercomputer network topology and one 
that makes di�erent trade-o�s from a fat tree with 
respect to switch and link count and alternative 
paths. In this topology, nodes and switches are ar-
ranged in a cube (or rather, rectangular cuboid) 
formation, and wraparound links enable data sent 
out one side of the network to re-enter on the other 
side. For example, if the node in the lower le� of 
�gure 1(c) needed to communicate with the node 
in the upper right, the long way would be to travel 

up-up-up-right-right-right-back-back-back. However, 
the wraparound links enable the data to travel down 
to the topmost position, then le� to the rightmost 
position, and �nally forward to the backmost position, 
taking three hops instead of nine. 

Putting cost arguments aside for the moment and 
assuming the same node count in both networks, 
could a fat tree be expected to outperform a 3-D 
torus, or would the 3-D torus likely be the faster net-
work? In the next section, we discuss how to answer 
this question. 

Simulating networks

As creating a new network is expensive and time-con-
suming, we want to be able to gauge how well a given 
network might perform in advance of its construction. 
�is is commonly done via network simulation—mim-
icking hardware’s behavior with slower but vastly more 
malleable so�ware. We again turn to a car-and-road 
analogy. Consider the situation of bumper-to-bumper 
tra�c on two single-lane roads that merge into one 
single-lane road, as shown in �gure 2. It would be 
prohibitively expensive to construct the roads and hire 
drivers to drive in the speci�ed pattern just to deter-
mine the speed at which tra�c can move. Instead, one 
could write a computer program that moves virtual 
cars on virtual roads and measures how much time 
elapses in this virtual world. In networking terms, this 
approach is called �it-level simulation because it tracks 
every �it (a unit of data, typically a byte) as it moves 
from switch to switch throughout the network. 

A

C

B

FIGURE 2. To determine the speed at which vehicles can move 
in bumper-to-bumper tra�c on two single-lane roads that 
merge into one single-lane road, one can simulate this “net-
work” using a computer program. There are di�erent approach-
es to network simulation, which vary in speed and degree 
of realism. 
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At each point in (virtual) time, the simulator con-
siders the current location of each �it in the network; 
the routing algorithm, which is used to decide where 
each �it should go next; the internal switch architec-
ture, which controls how link contention is resolved 
(for example, a simple alternating of �its as illustrated 
by the cars in �gure 2); and all the myriad other char-
acteristics that determine performance. With regard to 
�gure 2, a simulator would need to take into consider-
ation not only the speed limits and layout of the road 
system but also the decision-making process of each 
driver on the road to know where the driver wants to 
go and how he will negotiate with other drivers as to 
who gets to go �rst when lanes merge. 

�ere are two main problems with �it-level simu-
lation, one inherent and one arti�cial. �e inherent 
problem is that simulating a large network at such a 
�ne level of detail is necessarily slow—vastly slower 
than real network hardware could run. �ousandfold 
slowdowns are not uncommon. In other words, the 
simulator might need to run for an hour to report how 
a network might behave over the course of a single 
second of execution. To put that slowdown in perspec-
tive, consider that many of the scienti�c applications 
commonly run on supercomputers at Los Alamos Na-
tional Laboratory take hours to days to run; a few even 
require months to over a year to complete. Dilating 
such times by a factor of a thousand clearly limits the 
practicality of simulating such applications. Conse-
quently, �it-level simulations must by necessity whittle 
down their inputs to a more manageable size, simulat-
ing only small networks and for only brief periods of 
time, which limits realism. 

�e arti�cial problem is that for simplicity of opera-
tion, simulators are typically fed synthetic communi-
cation patterns rather than communication patterns 
derived from actual supercomputing applications. For 
example, two common test patterns are uniformly 
random tra�c in which each node sends data to some 
number of other nodes selected at random, and hot-
spot tra�c in which all nodes send data to a small sub-
set of the nodes selected at random. Second, almost all 
simulation studies presented in the supercomputer-
network literature assume that communication begins 
at �xed points in time, typically exclusively at the start 
of the simulation. �ird, computation time is almost 
universally ignored, even though this can greatly a�ect 
the severity and impact of link contention. 

Returning to our car-and-road metaphor, typical 
simulator usage would be analogous to gauging the 
quality of a layout of a city street under assumptions 
like the following: 

1. People drive randomly from one place to another 
as opposed to, say, a bias to drive to the kids’ 
school at the beginning of the day, then to the 
o�ce, then to the kids’ school again, and �nally 
back home. 

2. Everyone leaves home at exactly 9:00 a.m., 
drives directly to his destination, and leaves 
the car there. A less-common variation on this 
assumption is that Alice picks up Bob at ex-
actly 8:15 a.m., Carol at exactly 8:30 a.m., and 
Dave at exactly 8:45 a.m. for their carpool to 
work—all regardless of how heavy or light the 
tra�c happened to be at the time or whether 
a new highway had just been built to speed up 
their commute. 

3. No one stops to work, shop, or relax; all anyone 
in the city does is drive.

It would be hard to lend much credence to any 
result of such a study, yet this is very much how super-
computer networks are analyzed today. Again, this is 
an arti�cial problem. �ere is no fundamental reason 
that such assumptions must be made; they are merely 
a convenience to simplify the simulation e�ort. In the 
next section, we describe how we are improving the 
state of the art in network-simulation technology, both 
in terms of simulation speed and simulation realism. 

A new approach to network simulation

Our goal is to address all of the shortcomings dis-
cussed above; in particular, our aim is to simulate all 
of the following: 

 Full-sized applications, not synthetic 
communication patterns; 

 Hours of application-execution time, 
not seconds; 

 Tens of thousands of nodes, not hundreds to 
low thousands; 

 Communication interleaved with computation, 
not treated as independent; and 

 Communication beginning when prior commu-
nication or computation ends, not at �xed points 
in time.
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�e two mechanisms that underlie our approach 
are �ow-based simulation and logical clocks. We now 
describe each of these in turn. 

Flow-based simulation

�e reason that �it-based simulation is so slow is that 
supercomputer networks contain a massive number 
of components, and each of these must be simulated 
individually. Logically, if one were to simulate large 
groups of components as single entities, this would 
greatly reduce the amount of work, and therefore time, 
required to run the simulation. We therefore choose 
to consider a complete, end-to-end communication 
operation as a single unit of simulation rather than 
the numerous �its that get transmitted as part of 
that operation. 

Before we explain the details precisely, we present 
the intuition behind our approach in terms of our run-
ning car-and-road analogy. Assuming a 40 mph speed 
limit and that the distance from the front of one car to 
the front of the next is 29 feet, the math works out to 
two cars per second passing any particular point on 
the road. Hence, if we knew that 100 cars wanted to go 
from point A to point B and that there was no other 
tra�c on the road, the �rst car in that sequence would 
arrive a�er some given length of time (i.e., however 
long it takes to drive from point A to point B on an 
empty road, say three minutes), and the last car would 
arrive 100 ÷ 2 = 50 seconds later. 

We now consider the variation indicated by �gure 
2: 100 yellow cars want to go from point A to point 
B at the same time that 100 red cars want to go from 
point C to point B. What impact does the shared seg-
ment of road have on the time it takes each of those 
two �ows of cars to reach their destination? As before, 
two cars per second are reaching point B, but because 
the two �ows are interleaved, only one yellow car per 
second and one red car per second can reach that 
location. �e �rst car in each �ow is not delayed, so it 
still takes our assumed three minutes to arrive at point 
B, but the last car in each �ow arrives not 50 seconds 
later but 100 ÷ 1 = 100 seconds later. 

�e point of this exercise is to demonstrate that, un-
like with �it-level simulation, we do not have to con-
sider each individual car’s behavior. Instead, we can 
analyze an entire sequence of cars at once, regardless 
of whether there are a hundred cars in each �ow or a 

million. Furthermore, we do not need to consider how 
the drivers negotiate the merge. All that matters is that 
there is an even 50–50 split between red and yellow 
cars on the merged segment of road, not that it went 
red–yellow–red–yellow versus red–red–yellow–yellow. 

Our approach to network simulation works in 
very much the same way as the preceding analysis 
of tra�c speeds. As in the above instance, instead 
of working with communication times directly, we 
work with communication rates, which we can easily 
relate back to time by noting that time = latency + 
(data size ÷ communication rate), where latency is 
the time it would take a single �it to move from the 
source node to the destination node in the absence 
of any other tra�c. For example, suppose that the 
latency between node A and node B is 0.6 seconds 
and that all of the links between node A and node 
B are capable of transmitting 5 gigabytes per sec-
ond. If node A were to transmit 1 gigabyte of data 
to node B, this communication would take a total of 
0.6 + (1.0 ÷ 5.0) = 0.8 seconds. 

While latencies are essentially constant and data 
sizes can be extracted from an application (as we 
will discuss further when we discuss logical clocks), 
communication rates vary dynamically based on the 
amount of link contention, the number of communica-
tions sharing a network link at any given time. Con-
sider the network topology shown in �gure 3 (i.e., a 
2-D mesh). 

FIGURE 3. An illustration of link contention on a 2-D mesh 
network topology.
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If node A sends data to node H via the route A–
B–E–H (cyan links) at the same time as node B sends 
data to node F via the route B–E–F (magenta links), 
the B–E link will be shared by the two routes. Sup-
posing the link is capable of transmitting at a rate of 5 
gigabytes per second, 2.5 gigabytes per second will be 
allocated to each of the two communications. Because 
data cannot enter a link faster than it can exit, this 
slow link then exerts back-pressure all the way to the 
source nodes, slowing down the entire communication 
to 2.5 gigabytes per second. Using the previously men-
tioned sample numbers from each of the two commu-
nications will now take 0.6 + (1.0 ÷ 2.5) = 1.0 seconds 
instead of the contention-free 0.8 seconds computed 
earlier—slower but notably not twice as slow, even 
though the link speed e�ectively halved. 

Logical clocks

We criticized prior simulation e�orts for relying on 
synthetic communication patterns instead of actual 
communication patterns derived from supercomput-
ing applications. Our question is therefore how we 
can acquire an application’s communication pat-
tern so that it can be analyzed by a simulator. �e 

enumeration of all communication that an application 
performs during its execution—which node sent how 
many bytes to whom when—is called a communication 
trace. Fortunately, intercepting and logging an applica-
tion’s communication operations is fairly straightfor-
ward, and there exist numerous tools for collecting 
communication traces. 

�e issue is not with collecting the trace but with in-
terpreting it. Figure 4 helps clarify the problem. Figure 
4(a) presents a trace of a communication pattern in 
which node A sent a message to node C, then node B 
sent a message to node C, then, a�er a brief interlude, 
node C sent a message to node A, and �nally, node 
C sent a message to node B. A graphical view of this 
trace is shown in �gure 4(b). Send and receive times 
are reported from the perspective of each node’s clock. 
For example, the �rst line of the table in �gure 4(a) 
indicates that node A reported that it sent a message 
to node C at time 10 and that node C reported that it 
received node A’s message at time 16. 

�e �rst problem with this type of communication 
trace is that supercomputer nodes seldom include per-
node clocks that are globally synchronized to within 
half a message latency (i.e., the tolerance needed to 

(a) Communication trace

Source  
Node

Destination 
Node

Sent  
Time

Received 
Time

A C 10 16

B C 14 20

C A 28 34

C B 30 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(b) Timeline view of the trace

(c) Communication trace with poorly synchronized clocks

Source  
Node

Destination 
Node

Sent  
Time

Received 
Time

A C 14  12

B C 14 16

C A 24 38

C B 26 36 35 40

N
o

d
e

C

B

A

0 5 10 15 20 25 30

Time

(d) Timeline view of the trace with poorly synchronized clocks

FIGURE 4. Example of a communication pattern. Figure (a) and (b) illustrate a communication trace of nodes with per-
fectly synchronized clocks (an unrealistic condition). Figure (c) and (d) illustrate a communication trace of nodes with poorly 
synchronized clocks. 
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avoid erroneous readings, as discussed 
below). �ese would represent a costly but 
rarely useful expense. Furthermore, access 
to a single, centralized clock would be dev-
astating to performance—imagine �gure 
2 with tens of thousands of lanes merging 
into one. Hence, some node clocks may run 
slightly ahead or behind others, and even 
worse, some node clocks may run slightly 
faster or slower than others. �is is called 
clock dri�. Although clock-synchronization 
algorithms exist, so�ware implementa-
tions are unable to synchronize clocks 
to a granularity �ne enough to measure 
network-communication time. 

Figure 4(c) represents the same trace as 
�gure 4(a) but as measured with node A’s 
clock running four time units late and node 
C’s clock running four time units early. As 
the graphical depiction of this trace in �g-
ure 4(d) clari�es, the faulty clocks make the �rst mes-
sage appear to have been received before it was sent, 
a physical impossibility. Furthermore, instead of each 
message taking a constant six time units to get from 
source to destination as indicated by the “perfect” 
trace in �gure 4(a), the B–C communication in �gure 
4(c) appears to take only two time units while the C–B 
communication appears to take ten. 

�e second problem with using �gure 4-style com-
munication traces involves how the simulator replays 
the traced communication pattern. Suppose we want-
ed to simulate a network that runs twice as fast as the 
one on which the communication trace was acquired 
or perhaps the same network attached to processors 
running three times as fast as on the measurement 
system. It would be unreasonable in either case to 
expect all of the messages to be sent at the same times 
shown in �gure 4(a). A node that receives a message 
sooner or �nishes some computation faster may then 
be able to send a message earlier. We therefore do not 
want our simulator necessarily to simulate messages 
being sent at the times listed in the input trace but 
rather at the times that the simulated supercomputer 
would actually send them. 

�e solution to both of the preceding problems is 
an abstraction called a logical clock, �rst proposed by 
Lamport in 1978 [2] and sometimes called a Lamport 
clock a�er its inventor. A logical clock is a simple, inte-
ger counter that “ticks” as follows: 

1. When a node performs any operation (commu-
nication or computation), its clock advances its 
logical time by one. 

2. When a node sends a message, its clock in-
cludes the current logical time along with the 
normal data. 

3. When a node receives a message, it sets its logi-
cal clock to the maximum of its current logical 
time and one plus the logical time included in 
the message.

�ese rules help de�ne a “happened before” relation 
(mathematically, a partial ordering) on communica-
tion operations. If one operation occurred at a smaller 
logical time than another, then the simulator cannot 
perform the second operation until the �rst one �n-
ishes. In contrast, if two operations occur at the same 
logical time, the simulator has no restrictions on the 
order it performs them: it can run A then B, B then A, 
or both simultaneously. In essence, a logical clock pro-
vides a way to globally order communication opera-
tions regardless of the locally observed time at which 
each operation may appear to have occurred. 

To clarify using yet another driving analogy, con-
sider Alice’s and Carol’s sequences of events, presented 
in �gure 5. 

In what order did those events happen? It would be 
incorrect to sort them by the times listed in the event 
descriptions because Alice and Carol may not have 
synchronized their watches beforehand and because 

 

Alice’s Journal

I left home at 3:30 p.m. to drive my 
son to soccer practice. When I got 
to the soccer field my watch read 
3:55 p.m.

I left the soccer field five minutes 
later, at 4:00 p.m., to join Carol for 
tea. I arrived at the tea house at the 
same time as Carol, at 4:30 p.m. 
according to my watch.

After a lovely hour of tea with Carol, 
we both drove home at the same 
time, when my watch read 5:30 
p.m. just in time to make dinner.

Carol’s Journal

I left home at 6:30 p.m. to join 
Alice for tea. I arrived at the tea 
house at 7:00 p.m. according to 
my watch, which is right when 
Alice arrived.

I had an enjoyable tea time with 
Alice. We both left 45 minutes later, 
at 7:45 p.m. on my watch, to drive 
home. I got home at 8:05 p.m.

FIGURE 5. The ordering of events from Alice’s and Carol’s perspective.
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either watch may run faster or slower than the other. 
Nevertheless, we can intuitively rely on what makes 
sense to order the speci�ed events. Speci�cally, we 
know that Alice must have driven to the soccer �eld 
before driving from the soccer �eld; we know that 
both Alice and Carol were at the tea house at the same 
time; and we know that both Alice and Carol le� the 
tea house at the same time a�er having tea together. 

Figure 6 shows how to express that “what makes 
sense” intuition as formal statements of changes to 
logical time. �e table assigns one logical clock to 
each location (as opposed to each person) mentioned 
and lists the events that Alice observed, in order, 
followed by the events that Carol observed, in order. 
(�e results would be the same if we swapped or even 
interleaved Alice’s and Carol’s journals, as long as the 
events were not reordered relative to how they ap-
pear in either journal.) In our network-simulation 
framework, locations correspond to nodes, and a 
person driving from location to location corresponds 
to communication. 

At the beginning, all locations are at logical time 
1, and Alice and Carol are both in their respective 
home. When Alice drives to the soccer �eld, she must 
arrive some time a�er she was at home. �e soccer 
�eld therefore increments its logical time to 2, the 

maximum of its current time (1) and one plus the 
time at Alice’s house (1 + 1). When Alice drives to the 
tea house, she must arrive some time a�er she le� the 
soccer �eld. �e tea house therefore increments its 
logical time to 3, the maximum of its current time (1) 
and one plus the time at the soccer �eld (1 + 2). When 
Alice drives home, she must arrive both a�er the last 
time she was there (1) and a�er she le� the tea house 
(3), that is to say, at time 4. 

Turning our attention to Carol, Carol must arrive 
at the tea house at a time later than when she was at 
home. However, the tea house’s clock does not change 
because the maximum of its current time (3) and 
one plus the time at Carol’s house (1 + 1) is already 3. 
Finally, when Carol drives home, she must arrive both 
a�er the last time she was there (1) and a�er she le� 
the tea house (3), that is to say, at time 4. 

For clarity, the bottom part of �gure 6 re-sorts the 
data by logical time, showing which events happened 
at each time. From this presentation, one can infer that 
despite the physical times stated in the event descrip-
tions, Alice could not possibly have returned home be-
fore Carol arrived at the tea house (time 4 versus time 
3). However, the logical-clock readings in �gure 6 say 
nothing about whether Alice arrived back at her home 
before Carol arrived back at her home (time 4 for 

Logical time spent at various locations

Event Alice’s House Carol’s House Soccer Field Tea House

(Our story begins) 1 1 1 1

Alice’s Soccer 1 1 2 1

Soccer Tea 1 1 2 3

Tea Alice’s 4 1 2 3

Carol’s Tea 4 1 2 3

Tea Carol’s 4 1 2 4

Logical Time Observable Events

1 Alice and Carol are both at home.

2 Alice is at the soccer �eld. Carol may be either at home or en route to the tea house. We have insu�cient 
information to determine which.

3 Alice and Carol are both at the tea house.

4 Alice and Carol are both at home. We have insu�cient information to determine who arrived �rst.

FIGURE 6. The ordering of events based on logical time.
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both events). More subtly, the readings do not indicate 
which of Alice or Carol arrived �rst at the tea house 
(as both soccer → tea and Carol’s → tea completed at 
time 3); we know only that neither le� (time 4) before 
both arrived (time 3). 

Logical clocks provide an important mechanism 
for ful�lling the goals stated at the beginning of this 
section in that they enable a network simulator to 
reason about communication dependencies—what 
must happen before what—rather than physical times. 
One additional innovation of our network-simulation 
methodology is that we record computation time in 
physical time. In �gure 6’s analogy, this would be like 
a waiter at the tea house reporting how long Alice 
and Carol spent there. Maintaining this information 
enables the simulator to honor computation time, 
which may have substantial impact on communication 
time. Consider, for example, how much faster the cars 
in �gure 2 would move if the yellow cars were on the 
road only in the morning and the red cars were on the 
road only in the a�ernoon. 

Even without perfectly synchronized, dri�-free 
node clocks, combining physical computation time 
with logical communication time enables us to ac-
curately reproduce application timing measurements 
and provide some con�dence that varying hardware 
parameters will lead to accurate predictions of perfor-
mance. In the following section we quantify how well 
this works by presenting an early evaluation of our 
simulation methodology. 

Initial results

Our simulation project is still in its early stages. 
However, the logical-time trace acquisition so�ware 
and the simulator itself are operational and support 
a su�cient set of features for an initial evaluation of 
our approach. 

As a sample application, we use a hydrodynamics 
code developed at Los Alamos National Laboratory 
called PAGOSA. PAGOSA is designed to simulate 
high-speed �uid �ow and high-rate material defor-
mation [1]. �e application comprises approximately 
67,000 lines of code (about 1,000 printed pages), 
mostly written in Fortran but with some C. PAGOSA’s 
constituent processes are logically arranged in a 
three-dimensional layout and communicate primarily 

with their immediate north, south, east, west, front, 
and back neighbors. �is is an ideal structure for a 
three-dimensional network such as the one shown 
in �gure 1(c) if the application’s coordinates directly 
map to the network’s coordinates. For example, map-
ping a 6 × 6 × 6 PAGOSA layout onto a 6 × 6 × 6 
network could be expected to perform well. In con-
trast, mapping it onto a 6 × 4 × 9 network would in 
fact make some “neighbors” not adjacent to each 
other, leading to link contention. In practice, users are 
rarely given control over the set of nodes allocated to 
their applications. 

We ran PAGOSA on 1,000 nodes of a 1,600-node 
supercomputer called Mustang. Mustang is based on a 
fat-tree network such as the one shown in �gure 1(b), 
but 200 times larger. More precisely, �gure 1(b) repre-
sents what is o�en called a 2-ary 3-tree, because each 
switch connects to two switches in each adjacent row 
and there are three rows of switches. Mustang uses an 
18-ary 3-treea so each switch connects to 18 switches 
in each adjacent row, but there are still only three rows 
in the network, just as in �gure 1(b). As of June 2013, 
Mustang was rated the 137th fastest supercomputer in 
the world [3]. 

Full-application simulation at scale

PAGOSA was con�gured to execute a canonical 
hydrodynamics test problem, the simulation of a 
spherical shell of beryllium being subjected from all 
directions to a given amount of kinetic energy, which 
compresses the shell. Figure 7 presents the results of 
simulating this PAGOSA execution using the sets of 
network parameters listed in table 1. 

�e �rst bar, labeled Fat tree, measured, indicates 
that the PAGOSA test problem normally takes an hour 
and a half to complete on Mustang. �e second bar, 
Fat tree, demonstrates that our simulator is quite ac-
curate, being only 6.4% above the correct value. Recall 
that our work is still in its early stages; we hope in the 
near future to improve simulation accuracy. �e sec-
ond and subsequent bars each represent between 14½ 
and 15½ hours of time running the simulator on a 
single desktop computer. �is is a noteworthy success: 
Even though we used a thousandth of the number of 
nodes as in the real execution, our simulator took only 
tenfold the time to run. And, unlike real execution, 

a. Mustang in fact contains an incomplete 18-ary 3-tree—an XGFT (3; 18, 6, 16; 1 6 18) in Öhring’s notation [4]—and this is what 
we simulate.
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our simulator enables limitless “what if ” experimenta-
tion with di�erent network topologies and network 
performance characteristics. 

As a demonstration of that capability, the remain-
ing bars in �gure 7 show the results of simulating 
di�erent networks from Mustang’s actual network. As 
detailed in table 1, Fat tree, slow represents a substan-
tially slower network than Fat tree. 3-D torus uses the 
same network speeds as Fat tree but with a 3-D torus 
topology instead of a fat tree. Likewise, 3-D torus, slow 
uses the same network speeds as Fat tree, slow but with 
a 3-D torus topology instead of a fat tree. 3-D torus, 
shu�ed represents the same topology and network 
speeds as 3-D torus but randomly shu�es the mapping 
of PAGOSA processes to torus nodes. Torus networks 
are notoriously sensitive to process placement, and we 
can use our simulation technology to evaluate how 
sensitive a given application is to the placement of its 
constituent processes. 

�e clear implication of �gure 7 is that PAGOSA’s 
overall performance is almost completely oblivi-
ous to network performance. Despite the simulated 
variations in network topologies and speeds, the 
di�erence in execution time from one network to 
another is a tiny fraction of a percent. Although the 
1,000-node run of PAGOSA communicated an ag-
gregate of two billion messages comprising a total 
of 14 terabytes of data, communication time is so 
dominated by computation time that network speed is 
largely inconsequential. 

Comparison with simplistic simulators

We have shown that �ow-based simulation delivers 
simulation speed and that logical clocks provide high 
�delity to actual application execution time. �e next 
question to consider is how our approach compares to 
the more simplistic approach employed by most net-
work-simulation studies. While our simulator honors 
both communication dependencies and computation 
time, it is far more typical in the simulation literature 
to pretend that all messages are sent simultaneously at 
time 0 and to simulate the time it takes all messages to 
reach their destination in the absence of computation. 

We con�gured our simulator to disregard commu-
nication dependencies and computation time, in es-
sence dumbing down our simulator to the capabilities 
of a more traditional network simulator. �e results, 
shown in �gure 8, paint a very di�erent picture of 
performance from �gure 7. 

�e total height of each bar represents the time 
for the last message in the corresponding simula-
tion to complete. �e light purple region represents 
the average time for a message to complete. While 
�gure 7 indicates that PAGOSA’s total execution time 
is almost completely independent of communication 
time, �gure 8 exaggerates the di�erences. Speci�cally, 
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FIGURE 7. Simulated PAGOSA execution time using the sets of 
network parameters in table 1. 

TABLE 1. Simulation parameters

Simulation Topology Link Speed (Gbps) Switch Latency (ns) Software Overhead (ns)

Fat tree 18-ary 3-tree 40 100 1,500

Fat tree, slow 18-ary 3-tree 10 400 4,000

3-D torus 8 x 16 x 16 torus 40 100 1,500

3-D torus, slow 8 x 16 x 16 torus 10 400 4,000

3-D torus, shu�ed 8 x 16 x 16 torus 40 100 1,500
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FIGURE 8. Di�erences in simulated communication time only.

the 3-D torus requires 70% more time than the fat tree 
to transfer PAGOSA’s two billion messages. For both 
network topologies, quartering the bandwidth exactly 
quadruples the communication time. 

�is study demonstrates that it is critical to include 
communication dependencies and computation time 
in a network simulation. Otherwise, di�erences in net-
work topology and basic performance characteristics 
appear more signi�cant than they really are. �is mis-
leading information could persuade a supercomputing 
center to pay extra for a faster network when a slower, 
less expensive network may deliver almost exactly the 
same performance to applications. 

Conclusions

Modern supercomputers are architected as vast aggre-
gations of processors interconnected with high-speed 
networks. Because scienti�c applications are generally 
composed of myriad processes working together to 
simulate natural phenomena, communication speed 
is critical for e�ciently coordinating all of those 
processes. However, engineering a high-speed net-
work involves inevitable cost/performance trade-o�s. 
Furthermore, all applications use the network dif-
ferently, contraindicating a one-size-�ts-all solution. 
Some applications transmit a large number of small 
messages; others transmit a small number of large 
messages. In some applications, each node commu-
nicates with only a small set of other nodes; in others, 
all nodes communicate with all of the others. Some 
applications communicate continuously throughout 
their execution; others alternate communication and 
computation phases. 

Supercomputing centers want to maximize the 
overall performance delivered to the applications they 
expect to run but without overpaying for unneces-
sary network performance. One way to predict how 
well a given application will perform on a particular 
network in advance of its procurement is via a tech-
nique called network simulation. With simulation, one 
mimics hardware’s behavior and performance charac-
teristics using a so�ware test bed. Simulating hard-
ware is slower—typically many thousands of times 
slower—than running on true hardware but is cheap 
to deploy and easy to modify to investigate di�erent 
design alternatives. 

�e problem with existing network simulators and 
simulation studies is that they tend to incorporate so 
much detail that they cannot handle large numbers of 
nodes or substantial lengths of time. Furthermore, for 
simplicity of implementation they ignore the juxta-
position of communication with computation and 
with other communication, unrealistically assuming 
that all messages are initiated in a single burst. In this 
article we proposed addressing the speed issue with 
�ow-based simulation and the realistic-usage issue 
with logical clocks that are augmented with physical 
computation time. To demonstrate the potential of 
this approach we implemented a tool to derive logical-
time traces from parallel applications and a �ow-based 
simulator to replay those traces on di�erent simu-
lated network topologies and with di�erent network 
performance characteristics. 

One can draw the following conclusions from the 
experimental data we presented. First, our approach 
accurately simulates real execution time. Although 
our implementation is in its nascent stages, we already 
saw less than 7% error when simulating a scienti�c 
application, PAGOSA, running for an hour and a half 
across a 1,000-node network. Second, �ow-based 
simulation runs at reasonable speeds. We replayed that 
1,000-node, hour-and-a-half run on di�erent simu-
lated networks using only a single node, and it ran 
only 10 times slower than real time, not thousands or 
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tens of thousands, which is what is typical for a more 
traditional network simulator. �ird, the common 
simpli�cation of ignoring communication dependen-
cies and computation time in network simulations 
exaggerates the pressure the application applies to 
the network and leads to incorrect assessments of 
network performance. 

In our experiments, we found that PAGOSA per-
forms so much computation relative to communica-
tion that the network topology and basic performance 
characteristics are largely inconsequential. In contrast, 
a more traditional network simulator would incorrect-
ly claim 70% more performance for a fat-tree topology 
than for a 3-D torus topology when replaying PAGO-
SA’s communication pattern. 

In summary, combining logical time with �ow-
based simulation opens up new avenues for evaluating 
how fast applications will run on di�erent super-
computer networks, most notably supercomputer 
networks that have not yet been built. �is capability 
can inform network design decisions—or even simply 
a selection from multiple existing networks—to help 
provide applications with the best communication 
performance that the supercomputer budget allows.  
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Doing more with less: Cooling 
computers with oil pays o� 

D a v i d  P r u c n a l ,  P E

A 
consequence of doing useful work with computers is the production of heat. Every watt of 
energy that goes into a computer is converted to a watt of heat that needs to be removed, 
or else the computer will melt, burst into �ames, or meet some other undesirable end. Most 

computer systems in data centers are cooled with air conditioning, while some high-performance 
systems use contained liquid cooling systems where cooling �uid is typically piped into a cold 
plate or some other heat exchanger.

Immersion cooling works by directly immersing IT equipment into a bath of cooling �uid. The 
National Security Agency’s Laboratory for Physical Sciences (LPS) acquired and installed an 
oil-immersion cooling system in 2012 and has evaluated its pros and cons. Cooling computer 
equipment by using oil immersion can substantially reduce cooling costs; in fact, this method has 
the potential to cut in half the construction costs of future data centers.

Network servers are submerged into 
a tank of mineral oil. (Photo used with 
permission from Green Revolution 
Cooling: www.grcooling.com.)

20
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The fundamental problem

Before getting into the details of immersion cooling, 
let’s talk about the production of heat by computers 
and the challenge of e�ectively moving that heat from 
a data center to the atmosphere or somewhere else 
where the heat can be reused.

In order for computers to do useful work, they 
require energy. �e e�ciency of the work that they do 
can be measured as the ratio of the number of opera-
tions that they perform to the amount of energy that 
they consume. �ere are quite a few metrics used to 
measure computer energy e�ciency, but the most 
basic is operations per watt (OPS/W). Optimizing this 
metric has been the topic of many PhD theses and will 
continue to be the subject of future dissertations. Over 
the years, there has been progress against this metric, 
but that progress has slowed because much of the 
low-hanging fruit has been harvested and some of the 
key drivers, Moore's Law and Denard scaling, have ap-
proached the limits of their bene�t. Improvements to 
the OPS/W metric can still be made, but they usually 
come at the expense of performance. 

�e problem is not unlike miles per gallon for cars. 
�e internal combustion engine is well understood 
and has been optimized to the nth degree. For a given 
engine, car weight, and frontal area, the gas mileage 
is essentially �xed. �e only way to improve the miles 
per gallon is to reduce the performance or exploit 
external bene�ts. In other words, drive slower, accel-
erate less, dri� down hills, �nd a tailwind, etc. Even 
a�er doing all of these things, the improvement in gas 
mileage is only marginal. So it is, too, with comput-
ers. Processor clock frequencies and voltages can be 
reduced, sleep modes can be used, memory accesses 
and communications can be juggled to amortize their 
energy costs, but even with all of this, the improve-
ment in OPS/W is limited.

A natural consequence of doing useful work with 
computers is the production of heat. Every watt of en-
ergy that goes into a computer is converted into a watt 
of heat that needs to be removed from the computer, 
or else it will melt, burst into �ames, or meet some 
other undesirable end. Another metric, which until 
recently was less researched than OPS/W, is kilowatts 
per ton (kW/ton), which has nothing to do with the 
weight of the computer system that is using up the 

energy. Here, ton refers to an amount of air condi-
tioning; hence, kW/ton has to do with the amount of 
energy used to expel the heat that the computer gener-
ates by consuming energy (see �gure 1).

In fact, many traditional data centers consume as 
much energy expelling heat as they do performing 
useful computation. �is is re�ected in a common 
data center metric called power usage e�ectiveness 
(PUE), which in its simplest form is the ratio of the 
power coming into a data center to the power used to 
run the computers inside. A data center with a PUE 
of 2.0 uses as much power to support cooling, light-
ing, and miscellaneous loads as it does powering the 
computers. Of these other loads, cooling is by far the 
dominant component. So, another way to improve 
data center e�ciency is to improve cooling e�ciency. 
�e best case scenario would be to achieve a PUE of 
1.0. One way to achieve this would be to build a data 
center in a location where the environmental condi-
tions allow for free cooling. Some commercial compa-
nies have taken this approach and built data centers in 
northern latitudes with walls that can be opened to let 
in outside air to cool the computers when the outside 
temperature and humidity are within allowable limits. 
However, for those of us who are tied to the mid-
Atlantic region where summers are typically hot and 
humid, year-round free cooling is not a viable option. 
How can data centers in this type of environment 
improve their kW/ton and PUE?

Heat

CoolingPower

Useful computation

kW/ton

OPS/W

Compute 

node

Operating expense: 

Energy used to make 

and circulate cold air

Capital expense: 

Infrastructure required 

to make and circulate 

cold air

FIGURE 1. There are two halves to the computer power 
e�ciency problem: e�ciency of the actual computation (green 
sector) and e�ciency of the cooling infrastructure (blue sector).
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How computers are cooled

�ere are many di�erent ways that computers are kept 
cool in data centers today; however, the most common 
method is to circulate cool air through the chassis of 
the computer. Anyone who has ever turned on a com-
puter knows that the computer makes noise when it is 
powered on. Central processing units (CPUs), mem-
ory, and any other solid-state components are com-
pletely silent, so what makes the noise? Spinning disk 
drives can make a little noise, but by far, the dominant 
noisemakers are the fans that are used to keep air 
moving across the solid-state devices that are all bus-
ily doing work and converting electrical power input 
into computation and heat. Even the power supply in 
a computer has a fan because the simple act of con-
verting the incoming alternating current (ac) power 
to usable direct current (dc) power and stepping that 
power down to a voltage that is usable by the comput-
er creates heat. All of the fans in a computer require 
power to run, and because they are not perfectly 
e�cient, they too create a little heat when they run. 
�e power used to run these fans is usually counted as 
computer load, so it ends up in the denominator of the 
PUE calculation, even though it does nothing toward 
actual computation.

But how do all of these fans actually cool the 
computer? �ink of cooling as heat transfer. In other 
words, when an object is cooled, heat is transferred 
away from that object. What do people do when they 
burn their �nger? �ey blow on it, and if they are near 
a sink, they run cold water on it. In both cases they are 
actually transferring heat away from their burnt �nger. 
By blowing, they are using air to push heat away from 
their �nger, and by running water, they are immers-
ing their hot �nger in a cool �uid that is absorbing 
and carrying the heat away. Anyone who has burned a 
�nger knows that cold water brings much more relief 
than hot breath. But why? �e answer depends on 
principles like thermal conductivity and heat capacity 
of �uids. It also helps to understand how heat moves.

Heat on the go: Radiation, conduction, 
convection, and advection

Imagine a camp�re on a cool evening. �e heat from 
the �re can be used to keep warm and to roast marsh-
mallows, but how does the heat move from the �re? 
�ere are three modes of heat transfer at work around 

a camp�re: radiation, conduction, and convection 
(see �gure 2). As you sit around the �re, the heat that 
moves out laterally is primarily radiant heat. Now, as-
sume you have a metal poker for stirring the coals and 
moving logs on the �re. If you hold the poker in the 
�re too long it will start to get hot in your hand. �is 
is because the metal is conducting heat from the �re to 
your hand. To a much lesser extent the air around the 
�re is also conducting heat from the �re to you. If you 
place your hands over the �re, you will feel very warm 
air rising up from the �re. �is heat transfer, which 
results from the heated air rising, is convection. Now, if 
an external source, such as a breeze, blows across the 
�re in your direction, in addition to getting smoke in 
your eyes, you will feel heat in the air blowing towards 
you. �is is advection. In a computer, a CPU creates 
heat that is typically conducted through a heat spread-
er and then into the surrounding air. Convection 
causes the air to rise from the heat spreader, where it 
is then blown, or advected, away by the computer’s 
cooling fan.

Now that we know how heat moves, why is it that 
it feels so much better to dunk a burnt �nger in water 
than to blow on it? �is is where thermal conductivity 
and heat capacity of the cooling �uid come into play. 
First, a few de�nitions:

 Thermal conductivity is the ability of a material 
to conduct heat; it is measured in watts per meter 
degree Celsius, or W/(m·°C). 

 Heat capacity is the amount of heat required 
to change a substance’s temperature by a given 
amount or the amount of heat that a substance 

Convection

Conduction

Radiation

FIGURE 2. There are three modes of heat transfer at work 
around a camp�re: radiation, conduction, and convection.
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can absorb for a given temperature increase; it is 
measured in joules per degree Celsius (J/°C). 

 Speci�c heat capacity is the heat capacity per 
unit mass or volume; it is typically given per 
unit mass and simply called speci�c heat (C

p
); it 

is measured in joules per gram degree Celsius, 
or J/(g·°C). 

�e answer to why it feels so much better to dunk a 
burnt �nger into water than to blow on it can be found 
in table 1. First, water is a much better conductor of 
heat than air, by a factor of 24. �ink of it as having 24 
times more bandwidth for moving heat. Second, water 
can hold far more heat than air. In fact, 3,200 times 
more. So, water provides 24 times more heat transfer 
bandwidth and 3,200 times more heat storage than air. 
No wonder the �nger feels so much better in the water.

One more thing to consider about heat transfer; 
heat naturally �ows from hot to cold, and the rate of 
heat transfer is proportional to the temperature di�er-
ence. �is is why the colder the water, the better that 
burnt �nger is going to feel.

Cooling computers

By now it should be apparent that the fans in a com-
puter are there to advect (i.e., move) a cooling �uid 
(e.g., air) across the heat producing parts (e.g., CPUs, 
memories, and peripheral component intercon-
nect cards) so that the cooling �uid can absorb heat 
through conduction and carry it away. �is can be de-
scribed by the following mass �ow heat transfer equa-
tion:  =   c

p
∆T

In this equation,  is the rate of heat transfer in 
watts,  is the mass �ow rate of the cooling �uid in 
grams per second, c

p
 is the speci�c heat of the cooling 

�uid, and ∆T is the change in temperature of the cool-
ing �uid. What it says is that the cooling depends on 
production of the amount of coolant �owing over the 

TABLE 1. Thermal conductivity and heat capacity of common substances

Thermal Conductivity, 
W/(m·°C) at 25°C 

Speci�c Heat (C
p
), 

J/(g·°C) 
Volumetric Heat Capacity (Cv),  
J/(cm3·°C) 

Air 0.024 1 0.001297 

Water 0.58 4.20 4.20 

Mineral Oil 0.138 1.67 1.34 

Aluminum 205 0.91 2.42 

Copper 401 0.39 3.45 

heat source, the ability of the coolant to hold heat, and 
the temperature rise in the coolant as it �ows across 
the heat source.

How much air does it take to keep a computer 
cool? �ere is a rule of thumb used in the data center 
design world that 400 cubic feet per minute (CFM) 
of air is required to provide 1 ton of refrigeration. 
One ton of refrigeration is de�ned as 12,000 British 
thermal units per hour (Btu/h). Given that 1 kilowatt-
hour is equivalent to 3,412 British thermal units, it 
can be seen that a ton of refrigeration will cool a load 
of 3,517 W, or approximately 3.5 kW. �e mass �ow 
heat transfer equation can be used to con�rm the rule 
of thumb. Air is supplied from a computer room air 
conditioning (CRAC) unit in a typical data center at 
about 18°C (64°F). Now, 400 CFM of air at 18°C is 
equivalent to 228 grams per second, and the speci�c 
heat of air is equivalent to 1 J/(g·°C). Solving the mass 
�ow heat transfer equation above with this informa-
tion yields a change in temperature  of 15°C. What all 
this con�rms (in Fahrenheit) is that when 64°F cool-
ing air is supplied at a rate of 400 CFM per 3.5 kW of 
computer load, the exhaust air from the computers is 
91°F. Anyone who has stood in the “hot aisle” directly 
behind a rack of servers will know that this rule of 
thumb is con�rmed.

It is not unusual for a server rack to consume over 
10 kW. Using the rule of thumb above, a 10.5 kW 
server rack requires 1,200 cubic feet of cooling air—
enough air to �ll a 150 square foot o�ce space with 
an 8 foot ceiling—per minute. �at’s a whole lot of 
air! Simply moving all of that air requires a signi�cant 
amount of energy. In fact, for racks of typical one-unit 
(1U) servers, the energy required to move cooling 
air from the CRAC units and through the servers is 
on the order of 15% of the total energy consumed by 
the computers. Remember—this is just the energy to 
move the cooling air, it does not include the energy 
required to make the cold air.
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If there was a way to cool computers without 
moving exorbitant quantities of air, it could reduce 
energy consumption by up to 15%. �is may not seem 
like much, but consider that a 15% improvement in 
OPS/W is almost unheard of, and for a moderate 
10 megawatt (MW) data center, a 15% reduction in 
energy consumption translates into a savings of $1.5 
million per year.

Pumping oil versus blowing air

Unfortunately, we cannot dunk a computer in water 
like a burnt �nger since electricity and water do not 
play well together. Mineral oil, on the other hand, has 
been used by electric utilities to cool electrical power 
distribution equipment, such as transformers and 
circuit breakers, for over 100 years. Mineral oil only 
has about 40% of the heat holding capacity and about 
one quarter the thermal conductivity of water, but it 
has one huge advantage over water—it is an electrical 
insulator. �is means that electrical devices can oper-
ate while submerged in oil without shorting out.

While mineral oil does not have the heat capacity 
of water, it still holds over 1,000 times more heat than 
air. �is means that the server rack discussed earlier 
that needed 1,200 CFM of air to keep from burning 
up could be kept cool with just about 1 CFM of oil. 
�e energy required to pump 1 CFM of oil is dramati-
cally less than the energy required to blow 1,200 CFM 
of air. In a perfectly designed data center, where the 
amount of air blown or oil pumped is matched exactly 
to the heat load, the energy required to blow air is �ve 
times that required to pump oil for the same amount 
of heat removed. In reality, the amount of air moved 
through a data center is far more than that required 
to satisfy the load. �is is due to the fact that not all 
of the air blown into a data center passes through a 
computer before it returns to the CRAC unit. Since the 
air is not ducted directly to the computers’ air intakes, 
it is free to �nd its own path back to the CRAC unit, 
which is frequently over, around, or otherwise not 
through a server rack. As we will soon see, it is much 
easier to direct the path of oil and to pump just the 
right amount of oil to satisfy a given computer heat 
load. �us, the energy required to circulate oil can be 
more than 10 times less than the energy required to 
circulate air.

Immersion cooling system

Now that we have established that mineral oil would 
be a far more e�cient �uid to use for removing heat 
from computers, let’s look at how a system could be 
built to take advantage of this fact.

Imagine a rack of servers. Now imagine that the 
rack is tipped over onto its face. Now convert the 
rack into a tub full of servers. Now �ll the tub with 
mineral oil.

 Figures 3 and 4 show the system that LPS acquired 
and is using in its Research Park facility. �e system is 
comprised of a tank �lled with mineral oil that holds 
the servers and a pump module that contains an oil-
to-water heat exchanger and oil circulation pump. In 
this installation, the heat exchanger is tied to the facil-
ity's chilled water loop; however, this is not a necessity, 
as will be discussed later. �e oil is circulated between 
the tank and the heat exchanger by a small pump. 
�e pump speed is modulated to maintain a constant 
temperature in the tank. �is matches the cooling 
�uid supply directly to the load. �e design of the 
tank interior is such that the cool oil coming from the 
heat exchanger is directed so that most of it must pass 
through the servers before returning to the heat ex-
changer. �e combination of pump speed modulation 
and oil ducting means that the cooling �uid is used 
very e�ciently. �e system only pumps the amount 
needed to satisfy the load, and almost all of what is 
pumped passes through the  load.

�ere are three interesting side bene�ts to immer-
sion cooling in addition to its e�ciency. �e �rst is 
due to the fact that the system is designed to maintain 
a constant temperature inside the tank. Because the 
pump is modulated to maintain a set point tempera-
ture regardless of changes in server workload, the 
servers live in an isothermal environment. One of the 
causes of circuit board failures is due to the mismatch 
in the coe�cients of thermal expansion, or CTEs. �e 
CTEs for the silicon, metal, solder, plastic, and �ber-
glass used in a circuit board are all di�erent, which 
means that these materials expand and contract at 
di�erent rates in response to temperature changes. 
In an environment where the temperature is chang-
ing frequently due to load changes, this di�erence in 
CTEs can eventually lead to mechanical failures on the 
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circuit board. Oil immersion reduces this problem by 
creating a temperature-stable environment.

�e second side bene�t is server cleanliness. Air-
cooled servers are essentially data center air cleaners. 
While data centers are relatively clean environments, 
there is still some dust and dirt present. Remember, 
a typical server rack is drawing in a large o�ce space 
full of air every minute. Any dust or dirt in that air 
tends to accumulate in the chassis of the servers.

�e �nal side bene�t of immersion cooling is 
silence. Immersion cooling systems make virtually 
no noise. �is is not an insigni�cant bene�t, as many 
modern air-cooled data centers operate near or above 
the Occupational Safety and Health Administration’s 
allowable limits for hearing protection.

In addition to e�cient use of cooling �uid and 
the side bene�ts mentioned above, there is another 
advantage to immersion cooling—server density. As 
mentioned earlier, a typical air-cooled server rack 
consumes about 10 kW. In some carefully engineered 
HPC racks, 15–20 kW of load can be cooled with air. 

In comparison, the standard o�-the-shelf immer-
sion cooling system shown in �gure 3 is rated to hold 
30 kW of server load with no special engineering or 
operating considerations.

Doing more with less

Let’s take a look at how immersion cooling can 
enable more computation using less energy 
and infrastructure.

Air cooling infrastructure

Cooling air is typically supplied in a computer room 
with CRAC units. CRAC units sit on the computer 
room raised �oor and blow cold air into the under-
�oor plenum. �is cold air then enters the computer 
room through perforated �oor tiles that are placed in 
front of racks of computers. Warm exhaust air from 
the computers then travels back to the top of the 
CRAC units where it is drawn in, cooled, and blown 
back under the �oor. In order to cool the air, CRAC 
units typically use a chilled-water coil, which means 
that the computer room needs a source of chilled 
water. �e chilled water (usually 45–55°F) is supplied 
by the data center chiller plant. Finally, the computer 
room heat is exhausted to the atmosphere outside usu-
ally via evaporative cooling towers.

FIGURE 3. The immersion cooling system at the Laboratory for 
Physical Sciences, like the one pictured above, uses mineral oil 
to cool IT equipment. (Photo used with permission from Green 
Revolution Cooling: www.grcooling.com.)

FIGURE 4. Network servers are submerged into a tank of min-
eral oil and hooked up to a pump that circulates the oil. (Photo 
used with permission from Green Revolution Cooling: www.
grcooling.com.)
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Oil-immersion systems also need to expel heat, 
and one way is through the use of an oil-to-water heat 
exchanger; this means that oil-immersion systems, like 
CRAC units, need a source of cooling water. �e big 
di�erence however is that CRAC units need 45–55°F 
water; whereas, oil-immersion systems can operate 
with cooling water as warm as 85°F. Cooling towers 
alone, even in August in the mid-Atlantic area, can 
supply 85°F water without using power-hungry chill-
ers. Because oil-immersion systems can function with 
warm cooling water, they can take advantage of vari-
ous passive heat sinks, including radiators, geothermal 
wells, or nearby bodies of water.

�e takeaway here is that there is a signi�cant 
amount of expensive, energy-hungry infrastructure 
required to make and distribute cold air to keep com-
puters in a data center cool. Much of this infrastruc-
ture is not required for immersion cooling.

Fan power

One of the primary bene�ts of immersion cooling is 
the removal of cooling fans from the data center. Not 
only are the energy savings that result from the remov-
al of cooling fans signi�cant, they are compounded 
by potentially removing the necessity for CRAC units 
and chillers.

Cooling fans in a typical 1U rack-mounted server 
consume roughly 10% of the power used by the server. 
Servers that are cooled in an oil-immersion system do 
not require cooling fans. �is fact alone means that 
immersion cooling requires approximately 10% less 
energy than air cooling. Internal server fans, however, 
are not the only fans required for air-cooled comput-
ers. CRAC unit fans are also necessary in order to dis-
tribute cold air throughout the data center and present 
it to the inlet side of the server racks. 

�is CRAC unit fan power must be considered 
when determining the actual fan-power savings that 
can be realized by immersion cooling systems. Table 2 

compares the power required to move 1 W of exhaust 
heat into a data center’s chilled water loop for fan-
blown air cooling versus pump-driven oil-immersion 
cooling. �e third column shows this power as a 
percentage of IT technical load. It shows that the 
power required to run all fans in an air-cooled sys-
tem is equal to 13% of the technical load that is being 
cooled. �is is contrasted with the power required 
to run pumps in an oil-immersion cooling system, 
which is equal to 2.5% of the technical load that is 
being cooled. �e di�erence, 10.5%, represents the 
net fan-power savings achieved by switching from 
an air-cooled to immersion-cooled data center. �is 
analysis assumes that in both the air-cooled and 
immersion-cooled cases, the cooling infrastructure is 
matched exactly to the load. �e last column in table 
2 uses a similar analysis but assumes that the cooling 
infrastructure capacity is provisioned at twice the load. 
It shows that overprovisioned fan power grows faster 
than overprovisioned pump power. �is is further il-
lustrated in �gure 5.

Lower operating expenses

Table 3 compares the fan power versus pump power 
required to serve a 1 MW technical load, assuming 
the cooling infrastructure is sized to serve 150% of the 
load. It shows that the fan power to circulate cold air 
exceeds the pump power to circulate oil by 158 kW 
per megawatt of technical load. At one million dollars 
per megawatt-year, this equates to $158,000 a year 
in additional cooling energy operating expense. �is 
represents the savings due solely to circulating cooling 
�uid. When the cost of making cold air is considered, 
the energy savings of immersion cooling becomes 
much more signi�cant.

Table 4 summarizes the energy required for air 
cooling that is not needed for immersion cooling. �e 
values in Table 4 are typical for reasonably e�cient 
data centers.

TABLE 2. Power usage for air-cooled versus immersion-cooled data centers 

Method of Cooling Power Required to Move 1W 
of Waste Heat into Chilled 
Water Loop (W)

Percentage of Technical 
Load to Power Fan or Pump 
(at 100%)

Percentage of Technical 
Load to Power Fan or 
Pump (at 200%)

Fan-Powered Air 0.13 W 13% 26%

Pump-Powered Oil Immersion 0.025 W 2.5% 5%

Net savings due to fan removal 10.5% 21%
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FIGURE 5. The power required to run the fans in an air-cooled 
data center (purple line) accounts for about 13% of the center’s 
technical load (26% if run at twice the technical load); whereas, 
the power required to run the pumps in an immersion-cooled 
data center (green line) accounts for about 2.5% of the center’s 
technical load (5% if run at twice the technical load). As is illus-
trated, overprovisioned fan power grows faster than overprovi-
sioned pump power.

TABLE 3. Power usage for air-cooled versus immersion-cooled data centers with 1 MW of technical load

Method of Cooling Fan or Pump Power as a Percentage of 
Technical Load (at 150% capacity)

Total Power (at 150% capacity)

Fan-Powered Air 19.5% 1.195 MW 

Pump-Powered Oil Immersion 3.75% 1.0375 MW 

Delta 158 kW 

One ton of refrigeration will cool approximately 
3,500 W of technical load; therefore, 1 MW of techni-
cal load requires a minimum of 285 tons of refrigera-
tion. At 2.1 kW/ton, the air-cooled data center cooling 
infrastructure consumes about 600 kW to cool 1 MW 
worth of technical load. �is equates to $600,000 per 
year per megawatt of technical load. Almost all of this 
energy cost can be eliminated by immersion cool-
ing since chillers, CRAC units, and server fans are 
not required.

Lower capital expenses

Immersion cooling requires far less infrastructure 
than air cooling; therefore, building data centers 
dedicated to immersion cooling is substantially 
less expensive.

TABLE 4. Power usage of cooling equipment in air-cooled 
data centers

Cooling Equipment Power Usage (kW/ton)

Chillers 0.7 kW/ton 

CRAC Units 1.1 kW/ton

Server Fans 0.2 kW/ton

Total 2.1 kW/ton

Cooling infrastructure accounts for a major portion 
of data center construction costs. In high reliability/
availability data centers, it is not uncommon for the 
cooling infrastructure to account for half of the overall 
construction cost. According to the American Power 
Conversion Data Center Capital Cost Calculator, cool-
ing infrastructure accounts for at least 43% of data 
center construction cost.

For large data centers, where the technical load is in 
the neighborhood of 60 MW, construction costs can 
approach one billion dollars. �is means that about 
500 million dollars is being spent on cooling infra-
structure per data center. Since immersion-cooled 
systems do not require chillers, CRAC units, raised 
�ooring, and temperature and humidity controls, etc., 
they o�er a substantial reduction in capital expendi-
tures over air-cooled systems.

Immersion cooling FAQs

Several recurring questions have emerged over the 
many tours and demonstrations of the LPS immersion 
cooling system. Here are answers to these frequently 
asked questions.

Q. What server modi�cations are required 
for immersion?

�ere are three modi�cations that are typically 
required including: 

1.    Removing the cooling fans. Since some power 
supplies will shut down upon loss of cooling, 



28

Doing more with less: Cooling computers with oil pays o�

a small emulator is installed to trick the power 
supply into thinking the fan is still there. 

2.    Sealing the hard drives. �is step is not re-
quired for solid-state drives or for newer sealed 
helium-�lled drives. 

3.    Replacing the thermal interface paste between 
chips and heat spreaders with indium foil. 

Some server vendors are already looking at provid-
ing immersion-ready servers which will be shipped 
with these modi�cations already made.

Q. Are there hazards associated with the oil? (e.g., 
�re, health, spillage)

With regard to �ammability, the mineral oil is a 
Class IIIB liquid with a �ammability rating of 1 on a 
scale of 4. Accordingly, immersion cooling does not 
require any supplemental �re suppression systems 
beyond what is normally used in a data center. �e 
health e�ects are negligible. �e oil is essentially the 
same as baby oil.

Spills and leaks are considered a low probability; 
however, for large installations, some form of spill 
containment is recommended. Spill decks, berms, 
curbs, or some other form of perimeter containment 
is su�cient.

Q: How much does the system weigh?

A 42U tank fully loaded with servers and oil weighs 
about 3,300 pounds, of which the oil accounts for 
about 1,700 pounds. �is weight is spread over a 
footprint of approximately 13 square feet for a �oor 
loading of approximately 250 pounds per square foot. 
A comparably loaded air-cooled server rack weighs 
about 1,600 pounds with a footprint of 6 square feet, 
which also translates to a �oor loading of about 250 
pounds per square foot.

Q: How is the equipment serviced or repaired?

Basic services such as device and board-level 
replacements are not signi�cantly di�erent than for 
air-cooled equipment. Hot-swaps can be done in the 
oil. For services requiring internal access, the server 
can be li�ed out of the tank and placed on drainage 
rails above the surface of the oil. A�er the oil drains, 
component replacement is carried out the same way as 
for air-cooled servers. 

For rework at the circuit board level that requires 
removal of the oil, there are simple methods available 

to ultrasonically remove oil from circuit boards 
and components.

Q: Are there other types of immersion-cooling 
systems besides oil immersion?

Yes. What this article has covered is called single-
phase immersion. �at is, the oil remains in the liquid 
phase throughout the cooling cycle. �ere are some 
people looking into two-phase immersion-cooling 
systems. In a two-phase cooling process, the cooling 
liquid is boiled o�. �e resulting vapor is captured 
and condensed before being recirculated. �e phase 
change from liquid to gas allows for higher heat re-
moval but adds to the complexity of the system. Also, 
the liquid used in two-phase systems is extremely 
expensive compared to mineral oil. At this time, 
there are no two-phase immersion-cooling systems 
commercially available.

Conclusion

Computers consume energy and produce computation 
and heat. In many data centers, the energy required 
to remove the heat produced by the computers can 
be nearly the same as the energy consumed perform-
ing useful computation. Energy e�ciency in the data 
center can therefore be improved either by making 
computation more energy e�cient or by making heat 
removal more e�cient.

Immersion cooling is one way to dramatically 
improve the energy e�ciency of the heat removal 
process. �e operating energy required for immersion 
cooling can be over 15% less than that of air cooling. 
Immersion cooling can eliminate the need for infra-
structure that can account for half of the construction 
cost of a data center. In addition, immersion cooling 
can reduce server failures and is cleaner and quieter 
than air cooling.

Immersion cooling can enable more computation 
using less energy and infrastructure, and in these 
times of �scal uncertainty, the path to success is all 
about �nding ways to do more with less. 

About the author

David Prucnal has been active as a Professional 
Engineer in the �eld of power engineering for over 
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designing, building, and optimizing high-reliability 
data centers. He joined the Agency as a power sys-
tems engineer 10 years ago and was one of the �rst to 
recognize the power, space, and cooling problem in 
high-performance computing (HPC). He moved from 
facilities engineering to research to pursue solutions 
to the HPC power problem from the demand side 
versus the infrastructure supply side. Prucnal leads the 
energy e�ciency thrust within the Agency’s Advanced 
Computing Research team at the Laboratory for Phys-
ical Sciences. His current work includes power-aware 
data center operation and immersion cooling. He also 
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transistors, three-dimensional chip packaging, low-
power electrical and optical interconnects, and power 
e�ciency through enhanced data locality.
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P
ower and energy use by large-scale 
computing systems is a signi�cant and 
growing problem. The growth of large, 

centralized computing facilities is being 
driven by several factors including cloud 
computing, support of mobile devices, Internet 
tra�c growth, and computation-intensive 
applications. Classes of large-scale computing 
systems include supercomputers, data centers, 
and special purpose machines. Energy-e�cient 
computers based on superconducting logic 
may be an answer to this problem.

Energy-e�cient 
superconducting computing 
coming up to speed  |   

M a r c  A .  M a n h e i m e r
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e�ciency fast enough to keep up with increasing de-
mand for computing. Superconducting computing is 
an alternative that makes use of low temperature phe-
nomena with potential advantages. Superconducting 
switches based on the Josephson e�ect switch quickly 
(i.e., ~1 picosecond), dissipate very little energy per 
switch (i.e., less than 10-19 joules), and produce small 
current pulses which travel along superconduct-
ing passive transmission lines at about one third the 
speed of light with very low loss. Superconducting 
computing circuits typically operate in the 4–10 kelvin 
temperature range.

Earlier technologies for superconducting comput-
ing were not competitive due to the lack of adequate 
cryogenic memory, interconnects between the cryo-
genic and room temperature environments capable of 
high data transmission rates, and fabrication capability 
for superconducting electronic circuits. 

Superconducting computing

Recent developments in superconducting computing 
circuits include variants with greatly improved energy 
e�ciency [11]. Prospects for cryogenic memories have 
also improved with the discovery of memory ele-
ments which combine some of the features of Joseph-
son junctions and magnetic random access memory 
(MRAM). �e ability to operate both logic and mem-
ory within the cold environment, rather than with the 
main memory out at room temperature, decreases 
demands on the interconnects to room temperature to 
the point that engineering solutions can be found. 

Superconducting computers are being evaluated for 
potential energy e�ciency bene�ts relative to conven-
tional technology. �e total bene�t of such an energy-
saving technology would scale as the number of 
systems multiplied by the energy savings per system. 

My group at NSA’s Laboratory for Physical Sciences 
conducted a feasibility study of a range of supercon-
ducting computer systems from petascale to exas-
cale (1015–1018 �ops) for performance, computation 
e�ciency, and architecture. Our results indicate that 
a superconducting processor might be competitive 
for supercomputing [11]. Figure 1 shows a conven-
tional computer in comparison with a conceptual 
superconducting computer with the same comput-
ing performance, but much better energy e�ciency. 
On the le� is Jaguar, the supercomputer that held the 

Introduction

Supercomputers are also known as high-performance 
or high-end systems. Information about the super-
computers on the TOP500 list is readily available [1, 
2]. �e cumulative power demand of the TOP500 su-
percomputers was about 0.25 gigawatts (GW) in 2012. 
�e Defense Advanced Research Projects Agency and 
the Department of Energy have both put forth e�orts 
to improve the energy e�ciency of supercomputers 
with the goal of reaching 1 exa�ops for 20 megawatts 
(MW) by 2020. �e �ops metric (i.e., �oating point 
operations per second) is based on Linpack, which 
uses double-precision �oating point operations, and 1 
exa�ops is equivalent to 1018 �ops.

Data centers numbered roughly 500,000 worldwide 
in 2011 and drew an estimated 31 GW of electric 
power [3–5]. Information about data centers is harder 
to �nd than that of supercomputers, as there is no 
comprehensive list and much of the information is not 
public. Exceptions include colocation data centers [6], 
which are available for hire and include about 5% of 
data centers by number, and the Open Compute Proj-
ect led by Facebook [7]. Part of the Open Compute 
Project, Facebook’s �rst European data center under 
construction in Lulea, Sweden will be three times 
the size of its Prineville, Oregon data center, which 
has been using an average of 28 MW of power [8, 9]. 
Facebook has been a leader in e�orts to reduce power 
consumption in data centers and Lulea’s location just 
below the Arctic Circle with an average temperature of 
1.3°C helps with cooling, but average power usage is 
still expected to exceed 50 MW.

A 2010 study by Bronk et al. projected that US data 
center energy use would rise from 72 to 176 terawatt 
hours (TWh) between 2009 and 2020, assuming no 
constraints on energy availability [10]. �e potential 
bene�t to the US of technology that reduces energy 
requirements by a factor of 10 is on the order of $15 
billion annually by the year 2020, assuming an energy 
cost of $0.10 per kilowatt hour (kWh). Note that this 
counts only the bene�t of energy savings and does 
not include the potential economic bene�ts resulting 
from increased data center operation or savings due to 
reduced construction costs.

Conventional computing technology based on 
semiconductor switching devices and normal metal 
interconnects may not be able to increase energy 
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performance record on the TOP500 list from 2009 to 
2010. �e conceptual superconducting supercomputer 
shown on the right is much smaller and uses much 
less power (i.e., 25 kW versus over 7 MW).

Conclusion

Superconducting computing shows promise for large-
scale applications. �e technologies required to build 
such computers are under development in the areas 
of memories, circuit density, computer architecture, 
fabrication, packaging, testing, and system integration. 
�e Intelligence Advanced Research Projects Activity 
(IARPA) recently initiated the Cryogenic Computing 
Complexity (C3) Program with the goal of demon-
strating a scalable, energy-e�cient superconducting 
computer [12]. �e results of this program should 
tell us if superconducting computing can live up to 
its promise. 

About the author

Marc Manheimer is a physicist at NSA’s Laboratory 
for Physical Sciences. His research interests include 
magnetic materials and devices, and cryogenic phe-
nomena, devices, and systems. He recently became 
interested in superconducting computing as a solution 
to the power-space-cooling problem facing supercom-
puting. Manheimer is currently serving as the pro-
gram manager for the new C3 program at IARPA.

References

[1] TOP500. Available at: 
http://www.top500.org. 

[2] �e Green500. Available 
at: http://www.green500.org. 

[3] Koomey JG. “World-
wide electricity used in data 
centers.” Environmental 
Research Letters. 2008;3(3). 
doi: 101.1088/1748-
9326/3/3/034008.

[4] Koomey JG, Belady 
C, Patterson M, Santos 
A, Lange K-D. “Assessing 
trends over time in 
performance, costs, and 
energy use for servers.” 
2009 Aug 17. Final report 
to Microso� Corporation 

and Intel Corporation. 
Available at: http://download.intel.com/pressroom/pdf/
servertrendsrelease.pdf.

[5] Koomey JG. “Growth in data center electricity use 2005 
to 2010.” 2011 Aug 1. Oakland, CA: Analytics Press. Avail-
able at: http://www.analyticspress.com/datacenters.html.

[6] Information on collocation data centers is available at: 
http://www.datacentermap.com/datacenters.html. 

[7] Open Compute Project. Available at: http://www.
opencompute.org. 

[8] Ritter K. “Facebook data center to be built in Sweden.” 
�e Hu�ngton Post. 2011 Oct 27. Available at: http://www.
hu�ngtonpost.com/2011/10/27/facebook-data-center-
sweden_n_1034780.html. 

[9] McDougall D. “Facebook keeps your photos in the 
freezer: Arctic town now world data hub.” �e Sun. 2013 Jan 
24. Available at: http://www.thesun.co.uk/sol/homepage/
features/4759932/New-Facebook-data-hub-freezing-
Swedish-town-Lulea.html .

[10] Bronk C, Lingamneni A, Palem K. “Innovation for sus-
tainability in information and communication technologies 
(ICT).” James A. Baker III Institute for Public Policy, Rice 
University. 2010 Oct 26. Available at: http://bakerinstitute.
org/publications/ITP-pub-Sustainabilityin ICT-102510.pdf.

[11] Holmes DS, Ripple AL, Manheimer MA. “Energy-
e�cient superconducting computing—power budgets and 
requirements.” IEEE Transactions on Applied Superconduc-
tivity. 2013;23(3). doi: 10.1109/TASC.2013.2244634.

[12] IARPA. Cryogenic Computing Complexity (C3) 
Program. Available at: http://www.iarpa.gov/Programs/sso/
C3/c3.html. 

FIGURE 1. The Jaguar XT5 supercomputer at Oak Ridge National Laboratory (on left) and the 
conceptual superconducting supercomputer (on right) both perform at 1.76 peta�ops, but the 
Jaguar XT5 consumes over 7 MW; whereas, the superconducting one consumes 25 kW. (Jaguar 
XT5 image credit: Cray Inc.)



 The Next Wave | Vol. 20 No. 2 | 2013 | 33

A brief introduction to 
quantum computing  |  

P a u l  L o p a t a

Beyond digital  



Beyond digital: A brief introduction to quantum computing

34

Introduction

Computers are based on logic. �ese fundamental 
rules of logic dictate the types of problems that can be 
solved on a computing machine. �ese rules of logic 
also determine the resources required to complete a 
calculation. From the early years of computing ma-
chines to the present, the most successful computer 
designs have utilized two-level digital logic. �e 
amazing success of modern-day computing technol-
ogy is based on the algorithmic strengths of digital 
logic paired with the stunning technological advances 
of silicon complementary metal-oxide semiconductor 
(CMOS) chip technology. Processor chips and mem-
ory chips built out of silicon CMOS technology have 
provided a continually improving platform on which 
to perform digital logic. 

Despite the well-known successes of computing 
machines based on digital logic, some algorithms 
continue to be di�cult to perform—and some prob-
lems are intractable not only on existing machines but 
on any practical digital-logic machine in the foresee-
able future! �ese intractable problems serve as both 
a curse and a blessing: A curse because solutions to 
many of these intractable problems have signi�cant 
scienti�c and practical interest. A blessing because the 
computational di�culty of these intractable problems 
can serve as a safeguard for secure data storage and 
secure data transmission through the use of modern 
encryption schemes. 

It is clear that the only algorithmic way to solve 
these intractable problems is to utilize a computing 
machine that is based on something other than stan-
dard digital logic. 

One such path toward developing a “beyond-digital 
logic” machine is in the �eld of quantum computing. 
Quantum computing is still in the early stages of its 
development, and most of its advances are being re-
ported from universities and basic research labs. �ree 
major insights have led to the current understanding 
that quantum computing technology may have a sig-
ni�cant potential for solving some of these algorithmi-
cally intractable problems:

1. Speci�c algorithms have been developed to solve 
mathematical problems on a (yet-to-be-devel-
oped) quantum computer that are otherwise 
intractable using standard digital logic; 

2. Physical systems exist that can be used as the ba-
sic building blocks for a machine to implement 
these quantum algorithms;

3. �ere are ways to e�ectively handle errors that 
will inevitably occur when running an algorithm 
on one of these quantum computing machines. 

�is article introduces quantum computing 
through a discussion of these three insights and the 
technical literature that underpins this exciting and 
fast-moving �eld.

Quantum algorithm discoveries

When discussing the speed of an algorithm, it is useful 
to break the algorithm down to a basic set of steps, or 
gate operations, that can be repeated over and over 
again to complete the calculation. Once an algorithm 
has been written down in terms of a �xed-gate set, all 
that remains is counting up the number of gates re-
quired for a particular problem size to determine how 
many resources are required to �nish the calculation. 
When a problem is said to be intractable, it is because 
the number of gates required to complete the calcula-
tion is so overwhelmingly large that the algorithm will 
not �nish in a practical amount of time. 

�e �rst quantum algorithm discovered to have a 
speedup over algorithms based on digital logic came 
from David Deutsch in the �rst of a series of two pa-
pers in the Proceedings of the Royal Society of London 
A (from 1985 and 1989). �e algorithm Deutsch de-
vised to demonstrate this speedup over digital logic is 
something of a toy problem—it involves two narrowly 
de�ned classes of functions and tries to determine 
whether a function falls into one or the other of these 
two classes. While this toy problem has extremely 
limited practical interest, it was very useful in demon-
strating that there is potential for a quantum comput-
er, based on its beyond-digital logic, to solve problems 
faster than computers based on digital logic. �is 
algorithmic discovery, along with the quantum circuit 
formalism spelled out by David Deutsch, spurred on 
further algorithm development. 

Whereas Deutch’s algorithm had extremely limited 
utility beyond a �rst demonstration, an algorithm 
later developed by Peter Shor proved to be of more 
widespread interest. What became known as Shor’s 
Algorithm provides a speedup for �nding the unique 
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prime factors of a number—a problem of historic 
interest that gets extremely di�cult as the number 
to be factored gets larger and larger. Shor’s Algo-
rithm for factoring remains one of the best-known 
examples of a seemingly intractable problem that is 
potentially solved using a quantum computer. Many 
other quantum algorithms have been invented, each 
for tackling some di�cult mathematics problem. (See 
the further reading section for further details on the 
Deutsch algorithm and Shor’s Algorithm, as well as 
details on the many other algorithmic discoveries and 
their advantages.) 

It must be noted that not all algorithms achieve a 
speedup when tackling the problem with a quantum 
computer. �at is, a quantum computer will provide 
an improvement on solving some problems, but will 
not provide an improvement on solving all problems. 
As with the other aspects of quantum computing 
described below, quantum algorithm development 
remains a vigorous open �eld of investigation. 

Physical implementations of a 
quantum computer

Building and operating devices to implement the 
beyond-digital logic of quantum computing has been 
the focus of intense e�ort since the early quantum al-
gorithm discoveries. A great deal of progress has been 
made in several di�erent technologies toward these 
goals, with many impressive early demonstrations. 
�is includes demonstrating some small algorithms 
with a handful of logic operations. 

Demonstrating the basics of beyond-digital logic 
requires exquisite control over the tiniest parts of 
a physical system. At this small scale, the behavior 
of these systems is described by the laws of quan-
tum physics. By utilizing a system governed by 
the laws of quantum physics, beyond-digital logic 
becomes possible.

Exquisite control is needed to prevent the intro-
duction of damaging noise into the system during 
the control process because as noise is introduced the 
rules of quantum physics that describe the behavior 
of these small systems get washed out. (�is is, in 
some sense, why the broader world around us is seen 
to obey the everyday rules of classical physics rather 
than quantum rules that dominate the behavior of 

very small systems. �e jostling of the many small 
systems against one another contributes to the overall 
noise that washes out the quantum e�ects at a large 
scale.) �e term coherence time is used in the �eld of 
quantum computing to describe how long the regular 
behavior of a quantum system survives before an ir-
reversible connection to the outside world sets in and 
the quantum e�ects required for beyond-digital logic 
are washed out. 

�e �rst step in operating on a system capable of 
going beyond digital logic is to identify a suitable 
small subsystem that is isolated enough to have a long 
coherence time but, at the same time, can be fully 
controlled without introducing too much extra noise. 
�ese contradictory system requirements—isolation 
(for a long coherence time) and connection to the 
outside world (for full control)—make the demon-
stration of beyond-digital logic such a challenge. (See 
the further reading section for more details on ad-
ditional requirements on physical systems to perform 
quantum logic.)

Several physical systems have been used for early 
demonstrations of beyond-digital quantum logic. 
�ese include the following:

 Optical and microwave operations on the 
electronic and motional states of ionized atoms 
trapped in radio-frequency electric traps,

 Microwave operations on superconducting 
resonator circuits,

 Microwave and direct-current operations 
on the spin of a single electron isolated in 
a semiconductor,

 Linear and nonlinear optical operations on 
single photons,

 Optical operations on electrons in quantum dots 
grown into semiconductors, and

 Nuclear magnetic resonance operations on vari-
ous states of a molecular ensemble. 

Each of these technologies has di�erent setup, 
control, and measurement techniques. Furthermore, 
each technology is at a di�erent level of develop-
ment, and the outlooks for future development vary 
wildly between technologies. While impressive strides 
have been made, no technology has successfully 
implemented more than a handful of quantum logic 
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operations before succumbing to its limited coherence 
time. (See the further reading section for information 
about recent review articles in Science Magazine that 
describe several of these technologies in more detail.)

Dealing with errors in a 
quantum machine

Every complex machine demonstrates unexpected 
behavior. �e challenge for an engineer designing any 
computing machine is to design it so that the �nal 
answer at the end of an algorithm will not be wrong, 
even if errors creep in along the way. 

�e beyond-digital logic of quantum algorithms 
requires the data to remain isolated from external dis-
turbances through the course of a calculation. �is re-
quirement imposes a di�cult restriction on any error 
protection scheme that is implemented on a quantum 
computing machine: How do you check for errors in a 
way that does not impose a disturbance on the system 
that is too great to allow for the beyond-digital logic to 
be performed?

�e key insight into this problem is to couple the 
small subsystem being used to perform the calcula-
tion to another small subsystem that also is capable of 
performing beyond-digital quantum logic. �ese two 
subsystems together can be used to cleverly encode the 
data for the algorithm so that tests can be performed 
on the second subsystem to check for errors on the 
original subsystem. And, if done correctly, these tests 
on the second subsystem will not disturb the origi-
nal subsystem too much. Furthermore, if an error is 
detected, there are ways to correct this error on the 
original subsystem to allow the algorithm to �nish 
without corrupting the �nal result. 

For this quantum error protection protocol to work: 
1) the two subsystems must be encoded so that the 
data remains intact while encoded, and 2) a subrou-
tine algorithm to perform on these two subsystems 
must be devised that will robustly correct errors on 
the original subsystem—even if an error occurs while 
running this subroutine. 

Several di�erent schemes have been developed that 
accomplish these two requirements of quantum error 
protection, some of which are the most interesting and 
elegant results within the �eld of quantum comput-
ing. A serious challenge is the signi�cant overhead 
required for encoding the data and performing these 
subroutines. �ere is also typically a very low thresh-
old in error rates required before these schemes be-
come e�ective. No experimental groups have yet dem-
onstrated a quantum computing system of su�cient 
size and quality that can successfully demonstrate the 
full power of these quantum error protection schemes. 
Research continues to develop encodings that �x more 
errors while requiring fewer resources.

Conclusion

�e rapid growth in the �eld of quantum computing 
has been a result of three key insights: discoveries of 
novel quantum algorithms based on beyond-digital 
logic, demonstration of physical systems capable of 
implementing beyond-digital logic, and discovery of 
quantum error correction. And the �eld of quantum 
computing based on its beyond-digital logic remains a 
fast-moving and exciting �eld of study.  

About the author
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Further reading

Introduction to quantum computing

 Nielsen MA , Chuang IL. Quantum Computa-
tion and Quantum Information. Cambridge 
(UK): Cambridge University Press; 2000. 
ISBN-13: 978-0521635035.

�is is a comprehensive and classic refer-
ence in quantum computing. It includes 
an introduction to the mathematics 
involved, algorithms, error correction, 
and other topics in quantum information 
theory. Chapter 7 on physical realiza-
tions is out of date, but the book clearly 
lays out the physical requirements needed 
for operating beyond-digital logic on a 
physical system.

 Mermin ND. Quantum Computer Science. 
New York: Cambridge University Press; 2007. 
ISBN-13: 978-0521876582.

�is is a readable, high-quality introduc-
tion and reference. It is not as comprehen-
sive as Nielsen and Chuang, but the choice 
of topics is well considered. 

 Kitaev AY, Shen AH, Vyali MN. Classical and 
Quantum Computation. Providence (RI): 
American Mathematical Society; 2002.

�is is another nice introduction to major 
results in the �eld of quantum comput-
ing. More mathematical sophistication is 
expected from the reader. 

Algorithmic developments

 All three books in the Introduction to quan-
tum computing section of this list contain 
introductions to quantum algorithms. 

 Jordan S. Quantum Algorithm Zoo [updated 
2013 May 23]. Available at: http://math.nist.
gov/quantum/zoo/.

Stephen Jordan at the National Institute 
of Standards and Technology maintains a 
comprehensive online catalog of quantum 
algorithms. �is useful resource includes 
original references along with descriptions 
of the algorithms. 

Experimental progress

Special feature: Quantum informa-
tion processing. Science Magazine. 
2013;339(6124):1163–84.

�is recent special section in Science 
Magazine covers several technologies in 
the �eld of experimental quantum com-
puting. It includes review articles on ion 
traps, superconducting circuits, spins in 
semiconductors, and topological quantum 
computation. All of the articles are writ-
ten by leaders in their respective sub�eld 
and include brief insights into the his-
tory, current state of art, and outlook on 
future developments.

Quantum error correction

All three books in the Introduction to quan-
tum computing section of this list contain 
introductions to quantum error correction. 

Gaitan F. Quantum Error Correction and 
Fault Tolerant Quantum Computing. 
Boca Raton (FL): CRC Press; 2008. ISBN: 
978-0-8493-7199-8.

�is book provides a comprehensive dis-
cussion of many of the major results in the 
�eld, with a focus on stabilizer codes and 
their fault tolerant operation. 
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GLOBE AT A GLANCE

The Green500 provides a ranking of the most energy-e�cient supercomputers in the world. For 
decades, supercomputer performance has been synonymous with speed as measured in �oating-
point operations per second. This particular focus has led to supercomputers that consume 
enormous amounts of power and require complex cooling facilities to operate. The rising cost 
of power consumption has caused an extraordinary increase in the total cost of ownership 
of a supercomputer. (See “Doing more with less: Cooling supercomputers with oil pays o�” 

The Green500 top 10 supercomputers 

Specs: Cray Appro GreenBlade GB824M, 

Xeon E5-2670 8C 2.6 GHz, In�ni-

band FDR, Intel Xeon Phi 5110P

Country: US

Site: National Institute for Computa-

tional Sciences

Cores: 9,216

M�ops/W 2,449.57

Power (kW): 45.11

TOP500 Rank: 397

Specs:3 Beacon Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz, Custom

Country: US

Site: IBM Thomas J. Watson 

Research Center

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 169

Specs: IBM Blue

16C 1 6 G

5  Blue Gene/Q

Specs: IBM BlueGene/Q, Power 

BQC 16C 1.6 GHz, Custom 

Interconnect

Country: US

Site: Argonne National Laboratory

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 167

Specs:
6 Cetus

Specs: IBM BlueGene/Q, Power BQC 

16C 1.6 GHz, Custom

Country: US

Site: University of Rochester

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 171

SpSpecs: IBM BlueGene/
10 Blue Gene/QSpecs: IBM BlueGene/Q, Power BQC 16C 

1.6 GHz, Custom

Country: US

Site: Argonne National Laboratory

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 166

Specs:9 Vesta
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Specs: IBM BlueGene/Q, Power 

BQC 16C 1.6 GHz, Custom 

Interconnect

Country: Switzerland

Site: Ecole Polytechnique 

Federale de Lausanne

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 168

Specs: IBM BlueG

BQC 16C 1

7 CADMOS BG/Q

Specs: Eurotech Aurora HPC 10-20, 

Xeon E5-2687 W 8C 3.1 GHz, 

In�niband QDR, NVIDIA K20

Country: Italy

Site: Cineca

Cores: 2,688

M�ops/W 3,208.83

Power (kW): 30.70

TOP500 Rank: 467

Specs:1Eurora

Specs: IBM BlueGene/Q, Power 

BQC 16C 1.6 GHz, Custom 

Interconnect

Country: Poland

Site: Interdisciplinary Centre for 

Mathematical and Computa-

tional Modelling

Cores: 16,384

M�ops/W 2,299.15

Power (kW): 82.19

TOP500 Rank: 170

Specs: IBM Blu

BQC 16C

8 Blue Gene/Q

Specs: Eurotech Aurora HPC 10-20, 

Xeon E5-2687 W 8C 3.1 GHz, 

In�niband QDR, NVIDIA K20

Country: Italy

Site: Selex ES Chieti

Cores: 2,688

M�ops/W 3,179.88

Power (kW): 31.02

TOP500 Rank: —

Specs: Eurotech

Xeon E5

2 Aurora Tigon

HPC 10 20 Specs: Adtech, ASUS ESC4000/FDR 

G2, Xeon E5-2650 8C 2.0 GHz, 

In�niband FDR, AMD FirePro 

S10000

Country: Saudi Arabia

Site: King Abdulaziz City for Science 

and Technology

Cores: 38,400

M�ops/W 2,351.10

Power (kW): 179.20

TOP500 Rank: 52

Specs:4 SANAM

for additional information on supercomputers and power consumption.) In order to increase 
awareness and use of supercomputer performance metrics based on e�ciency and reliability, the 
Green500 list puts a premium on energy-e�cient performance for sustainable supercomputing.  
The following ranking is from June 2013; the list in its entirety as well as information about the 
measurement methodology is available at www.green500.org.

LEGEND

M�ops/W Mega (i.e., million) �oating-point 

operations per second per watt

kW Kilowatts (i.e., thousand watts)
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The Green500 list of June 2013 is dominated by 
heterogeneous supercomputers—those that combine 
two or more types of processing elements together, 
such as a traditional central processing unit (CPU) 
combined with a graphical processing unit (GPU) or a 
coprocessor. 

Eurotech manufactured the top two supercomputers 
on the list—Eurora and Aurora Tigon. Eurora, located 
in Italy at Cineca, performs at 3.21 giga�ops per 
watt, while Aura Tigon, located in Italy at Selex ES 
Chieti, performs at 3.18 giga�ops per watt. These 
supercomputers are nearly 30% more energy e�cient 
than the previous top supercomputer on the Green500 
list. The fastest supercomputer of June 2013—
Tianhe-2—performed at 1.9 giga�ops per watt, placing 
it in the number 32 spot on the Green500 list.

“Overall, the performance of machines on the 
Green500 List has increased at a higher rate than 
their power consumption. That’s why the machines’ 
e�ciencies are going up,” says Wu Feng, founder of 
the Green500. For machines built with o�-the-shelf 
components, a great deal of their e�ciency gains can 
be attributed to heterogeneous designs; such a design 
allows these systems to keep pace and in some cases 
even outpace custom systems (e.g., IBM’s Blue Gene/Q). 

“While the gains at the top end of the Green500 appear 
impressive, overall the improvements have been much 
more modest,” says Feng (see �gure 1). “This clearly 
indicates that there is still work to be done.”

The Green500 announces the most 

energy-e�cient supercomputers  

of June 2013
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POINTERS

FIGURE 1. The energy e�ciency of the highest-ranked supercomputers on the Green500 list (green circles) has 
been improving much more rapidly than the mean (brown triangles) and the median (pink squares). For instance, 
while the energy e�ciency of the greenest supercomputer improved by nearly 30%, the median improved by only 
about 14%, and the mean by only about 11%. 
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SPIN UTS
News from the Technology Transfer Program

Novel methods for 
manufacturing photonic 

logic devices 

42

Traditional integrated electronic components 
have not kept pace with the performance 
demands of applications such as high-speed 

encryption, video on demand, and broadband 
television. Because optoelectronics (integrated 
photonics) promise to deliver greater speed and 
bandwidth than their electronic counterparts, some 
experts anticipate that they could one day make 
traditional electronic semiconductors obsolete. 
�e widespread adoption of optical switching 
has increased pressure on industry to create 
fully photonic components to replace traditional 
electronic devices.

Even though research on photonic logic devices 
has been ongoing for several years, an integrated 
photonic device that could rival today’s integrated 
electronic circuit does not yet exist. In particular, the 
ability to easily manufacture laser based devices and 
waveguides at the microcircuit level has presented 
challenges in the wafer fabrication stage. One 
speci�c issue has been the ability to develop optical 
interfaces, such as laser to waveguide, that do not 
have impedance mismatches.

NSA engineers within the Trusted Systems 
Research group in the Research Directorate took on 
the challenge. �eir research resulted in methods to 
precisely manufacture photonics devices that use air 
gaps to tune the re�ectance between optical devices 

(e.g., �gure 1). �ese air gaps are formed by making 
a wafer mask with very precise regions that allow 
the deposition of sacri�cial material onto the wafer 
forming spacers. �is material is removed later by 
chemical etching processes. Engineers can now adjust 
the re�ectance by varying the sacri�cial spacer layers.

Another challenge facing photonic device 
developers is the specialized equipment required 
to manufacture sacri�cial layers within a wafer. 
Working with the Laboratory for Physical Sciences 
(LPS), NSA engineers were able to develop methods 
of producing photonic devices using standard wafer 
manufacturing equipment such as Plasma Enhanced 
Chemical Vapor Deposition (PECVD) and later 
Biased Target Ion Beam Deposition (BTIBD). �ese 
novel methods opened up the potential for even more 
advanced devices since custom or highly specialized 
manufacturing equipment is not required. Another 
key to this technology is LPS’s Projection Lithography 
Stepper tool (see �gure 2) which projects the circuit 
image onto the wafer.

In late 2011, NSA’s Technology Transfer Program 
(TTP) licensed 16 patented photonics manufacturing 
methods to industry. �is technology transfer was 
one of the largest bundled patent deals in the history 
of TTP and reemphasized the commitment of NSA to 
return taxpayer-funded research and technology back 
to private industry. 
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MTD Photonic Logic Device

FIGURE 1. An image of a fabricated mode transition-
discrimination (MTD) photonic logic device with semiconductor 
laser edged facets and etched waveguide trenches.

FIGURE 2. LPS's Projection 
Lithography Stepper tool.
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