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ABSTRACT 

Due to their size and unique chemical properties, 

nanomaterials have the potential to interact with living 

organisms in novel ways, leading to a spectrum of negative 

consequences. Though a relatively new materials science, 

already nanomaterial variants in the process of becoming too 

numerous to be screened for toxicity individually by traditional 

and expensive animal testing. As with conventional pollutants, 

the resulting backlog of untested new materials means that 

interim industry and regulatory risk management measures 

may be mismatched to the actual risk. The ability to minimize 

toxicity risk from a nanomaterial during the product or system 

design phase would simplify the risk assessment process and 

contribute to increased worker and consumer safety. 

Some attempts to address this problem have been made, 

primarily analyzing data from in vitro experiments, which are 

of limited predictive value for the effects on whole organisms. 

The existing data on the toxicity of inhaled nanomaterials in 

animal models is sparse in comparison to the number of 

potential factors that may contribute to or aggravate 

nanomaterial toxicity, limiting the power of conventional 

statistical analysis to detect property/toxicity relationships. 

This situation is exacerbated by the fact that exhaustive 

chemical and physical characterization of all nanomaterial 

attributes in these studies is rare, due to resource or equipment 

constraints and dissimilar investigator priorities. 

This paper presents risk assessment models developed 

through a meta-analysis of in vivo nanomaterial rodent-

inhalational toxicity studies. We apply machine learning 

techniques including regression trees and the related ensemble 

method, random forests in order to determine the relative 

contribution of different physical and chemical attributes on 

observed toxicity. These methods permit the use of data records 

with missing information without substituting presumed values 

and can reveal complex data relationships even in nonlinear 

contexts or conditional situations.  

Based on this analysis, we present a predictive risk model 

for the severity of inhaled nanomaterial toxicity based on a 

given set of nanomaterial attributes. This model reveals the 

anticipated change in the expected toxic response to choices of 

nanomaterial design (such as physical dimensions or chemical 

makeup). This methodology is intended to aid nanomaterial 

designers in identifying nanomaterial attributes that contribute 

to toxicity, giving them the opportunity to substitute safer 

variants while continuing to meet functional objectives. 

Findings from this analysis indicate that carbon nanotube 

(CNT) impurities explain at most 30% of the variance 

pulmonary toxicity as measured by polymorphonuclear 

neutrophils (PMN) count. Titanium dioxide nanoparticle size 

and aggregation affected the observed toxic response by less 

than ±10%. Difference in observed effects for a group of metal 

oxide nanoparticle associated with differences in Gibbs Free 

Energy on lactate dehydrogenase (LDH) concentrations 

amount to only 4% to the total variance. Other chemical 

descriptors of metal oxides were unimportant. 

INTRODUCTION 

Nanoparticles or ultrafine particles, sometimes designated 

PM0.1 (i.e. particulate matter 0.1 micrometers or less), are 

solid particles where at least one dimension is in the range of 

1-100 nanometers. A nanometer is one billionth of a meter, 

and is just slightly longer than 3 molecules of H2O would 

stretch if lined up end to end. Since many properties of solids 

including magnetism, electrical conductivity, and tensile 

strength arise only after sufficient numbers of atoms have 

aggregated together, the properties exhibited by nanoparticles 

can either be in gentle transition from solute to solid behavior 

or reveal steep threshold transitions to some combination of 
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characteristics as particle size increases. Conversely, at small 

sizes, particles can exhibit an entirely new property like semi-

conductivity that is unexpected based on studies of the material 

bulk properties.  

These peculiar aspects of nanoparticles have led to the 

conjecture that some particular substance in nano-form could 

prove to be anomalously toxic or more toxic [1]. Since many 

biological structures and molecules are nano-sized themselves 

(e.g., like the protein immunoglobulin-G that measures 33 nm 

across), there is a potential for unique interactions between 

these small solids and biological processes.  

That exposure to nanomaterials in the workplace may 

result in dangerous pathologies associated with their unique 

properties is reflected in recent National Institutes of 

Occupational Safety and Health (NIOSH) recommendations. 

Existing regulations by the Occupational Safety and Health 

Administration (OSHA) limit titanium dioxide particulate to a 

concentration in the workplace of 15 mg/m3, and limit carbon 

particulate to a concentration of 5 mg/m3 [2]. But, upon review 

of the available research, NIOSH published a recommendation 

that titanium dioxide nanoparticles be limited to no more than 

0.3 mg/m3 [3], and also proposed that carbon nanotubes 

(CNTs) be limited to concentrations no greater than 7 µg/m3 

[4]. The recommended maximum allowable quantities of nano-

particulate in the workplace are 50 and 700 times smaller than 

for carbon soot and micron and larger diameter titanium 

dioxide respectively. No new OSHA regulations for 

nanoparticles have yet been formally adopted.  

The new proposed exposure limits apply to all particles 

with a primary size smaller than 100 nm equally, even though 

substantial differences in toxicity may exist between 20 nm and 

40 nm particles, between thinner or thicker nanotubes, or 

between lightly aggregated or significantly aggregated 

nanoparticles. Small differences in chemistry including 

coatings, functionalizations, or contaminants may produce 

divergent toxic responses. Thus, a limit based on all shapes 

and varieties for a certain chemical compound sized on 

average below a single threshold may be inadequate.  

Developing specific standards for nanoparticle variants 

would require a lot more data than the size-based standard 

and, animal studies, while the most applicable to human risks, 

are expensive. Since, there are potentially dozens of variable 

characteristics between different nanoparticles, such studies 

can only offer limited conclusions on the importance of 

specific characteristics (for example, that multi-walled carbon 

nanotubes may be more toxic than single-walled carbon 

nanotubes [5]).  

Reaching conclusions on the interactions of specific 

characteristics and dose on observed toxic effects is further 

complicated by the inconsistent or incomplete measurement of 

nanoparticle properties among the published studies. So, in 

many published nanotoxicology studies there is uncertainty 

about the properties of the substance that was tested.  

Since, there is limited capability of cellular in vitro studies 

to predict the outcome of in vivo mammalian studies [6], and 

individual animal studies have not adequately studied the 

variations in nanoparticle properties, understanding the 

contributions of several nanoparticle properties at once must 

rely on a virtual experiment assembled from combinations of 

individual studies across the literature, a meta-analysis [7].  

The identification of properties responsible for toxicity 

could conceivable allow product and process designers to 

design safer nanoparticles while achieving the same functional 

objectives. For example, if the length of a carbon nanotube was 

critical to a design’s functionality, but its diameter was not, 

and diameter proved to be a critical determinant of the carbon 

nanotube’s toxicity risk, careful selection of the CNT’s 

diameter could mitigate that risk without compromising 

functionality.  

There has been limited research to date on predictively 

modeling the toxicity of nanomaterials, and those studies have 

focused entirely on cell culture toxicity in vitro [8–10]. 

Summarizing the knowledge gained to date from in vivo 

mammalian pulmonary nanoparticle toxicity studies of 

relevance to workplace safety is the intent of this paper.  

This work seeks to quantify and visualize the degree to 

which changes in certain nanoparticle characteristics change 

the overall magnitude of the toxic response to a given dose of 

nanoparticles. To accomplish this, our study utilizes a machine 

learning algorithm called the random forest (RF), which has 

unique capabilities for quantitatively learning from data with a 

high proportion of missing values, revealing relationships that 

may be conditional or only applicable after a certain threshold 

has been passed, and without having to assume statistical 

independence between each of the inputs. These strengths 

make RF models especially suited to risk assessment activities 

in the early stages of implementing a new technology.  

METHODS 

We perform a meta-analysis of pulmonary nanoparticle 

toxicity studies in order to determine the degree to which 

design variables such as chemical composition, dimensions, 

shape, and surface treatments affect the magnitude of the toxic 

dose response.  

Data Sources 

We collected data from published peer-reviewed literature 

describing experiments where rodents were exposed to 

nanoparticles through inhalation (dry aerosols), aspiration (a 

small volume of saline fluid with suspended nanoparticles 

positioned just beyond the trachea and naturally inhaled by the 

animal), or instillation (a small volume of saline fluid with 

suspended nanoparticles injected into the bronchial tubes). 

All of the included studies reported quantitative toxicity 

measures for either the concentration of lactate dehydrogenase 

(LDH) or the number of polymorphonuclear neutrophils 

(PMN) in bronchoalveolar lavage (BAL) fluid. BAL is a 
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procedure where saline fluid is used to rinse out the lungs of 

the rodent some time following exposure. The fluid is collected 

along with dislodged cells, particles, and biomolecules and 

analyzed for indicators of toxicity, like PMN, LDH, and Total 

Protein.  

LDH is a cellular protein and as such is an indicator of 

cytotoxicity or cell membrane damage in the lungs. This is 

typically measured as a concentration on a picogram per 

milliliter basis, but we translate all data for this analysis as a 

multiple change from control basis (i.e. fold of control). The 

mean and standard deviation of LDH concentration for a group 

of animals exposed to nanoparticulate are normalized to the 

mean measurement for the control group. Control animals are 

either exposed to only air for inhalation experiments, or an 

instillation of saline fluid for instillation experiments.  

The PMN cell count is an indicator of inflammation and 

the early stages of an immune response. PMNs are measured 

in terms of absolute cell counts per milliliter of BAL fluid. We 

translate these values into “fold of control” in the same way as 

the LDH values to reflect the change from the control group 

response.  

Studies included in this meta-analysis had to include 

characterization of the nanoparticles used in the experiment as 

well as control groups and a quantitatively measured output for 

PMN, LDH, or Total Protein including reported uncertainty. A 

complete listing of all data sources utilized in this study is 

provided in Annex C.  

Data Preparation 

The input for the data analysis is a matrix with rows 

representing data specific to individual animals in the selected 

studies and columns containing experimental and output 

variables.  

Before analysis, the output data for this study were 

expanded using a Monte Carlo resampling technique. At the 

rate of 100 samples per animal subject, a given set of 

experimental inputs including dose levels and nanoparticle 

characteristics were associated with 100 discrete realizations of 

the reported distribution of measured output responses. 

Distributions for measured endpoints were assumed to be 

normal with values deemed to be impossible (cell counts less 

than zero, for example) excluded. For example, if the PMN 

average of 6 animals with a given exposure to nanoparticles 

was measured to be 10 ± 2, the data set would contain 600 

rows (6 × 100) with identical input characteristics, but each 

row having a discrete sample from a normal distribution with a 

mean of 10 and a standard deviation of 2. We found that 

higher sampling rates (e.g., 500 rows per animal or 1,000 rows 

per animal) did not alter the results.  

This procedure accomplishes two important tasks for this 

analysis: (1.) it reduces the likelihood of overfitting, since the 

model must measure its error against the entire range of 

experimental outcomes and not just the mean values; and (2.) 

it permits the uncertainty of the multi-dimensional model with 

respect to the actual measured results to be traced through and 

evaluated at any desired point or sub-region of interest.  

The final data set contained one column for each 

experimental variable including measured nanoparticle 

characteristics and attribute of exposure (e.g., total dose, 

length of recovery, mode of exposure, etc.), and 100 rows for 

each animal subject utilized in the experiments.  

Random Forest Models 

We employ random forest (RF) models [11]—an 

unsupervised machine learning method—to discover and 

quantify the relationships in the existing data set. RF models 

are made up of ensembles of regression trees (RT) [12], which 

are hierarchical structures of decision rules that divide 

observations into two groups on the basis of a specific criterion 

(see Figure 1). The decision rules are automatically selected by 

the algorithm on the basis of those with produce the greatest 

possible information gain. Random forests extend this process 

by creating large numbers of regression trees using subsets of 

the data randomly omitting a fraction of the experimental 

variables. The results are averaged and considered to be more 

robust than a single regression tree constructed from the 

complete data set.  

We have implemented Breiman’s random forest algorithm 

via the MATLABTM function treebagger, creating RF 

models of 1,000 trees each, each branch being established from 

a randomly selected sub-set of one third of the available input 

variables. The learning progression diagrams shown in Annex 

B indicate that the models have already reached their 

maximum performance with several hundred fewer trees. One 

may download the final model objects for this study and 

instructions on implementation here: 

http://nanohub.org/resources/17539. For further detail on the 

model implementation, internal structure and validation 

results, see Annex B.  

Visualizing Interactions 

In order to visualize the interactions between multiple 

nanoparticle and exposure characteristics at the same time, we 

record the RF predicted output while changing 2 or 3 of the 

input parameters of interest from their minimum to maximum 

values in 20 steps. For 2 variables, this creates a matrix of 400 

values, which we represent as a filled contour plot (see Figure 

2). Changes in 3 variables are represented by multiples of two 

dimensional contour plots, for example showing the 

relationship between toxicity and changes in length and 

diameter for different doses of carbon nanotubes as shown in 

Figure 3.  

 



 4  

 

RESULTS 

Examining the dose-response effects of exposure to 

nanomaterials (see Figure 2), one can see that for carbon 

nanotubes the total dose dominates the effects from the length 

of recovery time in their influence on PMNs, while the 

recovery from exposure to titanium dioxide nanoparticles 

dominates the expected LDH and total protein concentrations, 

while total dose explains most of the LDH observations for 

metal oxides (Figure A9).  

To consider the effects of nanoparticle design tradeoffs, 

one can see, for example, how length and diameter of CNTs 

appear to affect toxicity across a range of dose levels (Figure 

3). With the highest observed responses in PMN and LDH 

occuring when the diameter of the CNTs is large and the 

length of the CNTs is short. These effects are consistent 

proportionally across several dose levels, even as the total 

magnitude of the observed response increases. 

For titanium dioxide we display the effects of chemical 

purity and aggregation (MMAD, mass mode aerodynamic 

diameter—a metric for the average size of aggregated 

particles) as total dose changes (Figure 4). Aggregation 

appears to have a limited effect on pulmonary inflammation as 

compared to changes in purity.  

For a broader set of metal oxides, we find that the total 

dose for an animal subject is a much more important predictor 

of measured BAL LDH than any other physical or chemical 

attribute of the nanoparticles (Figure 5). The total dose of 

metal oxide nanoparticles appears to explain almost all of the 

variation (Figure 5 and A9) 

Additional contour plots generated by these models are 

included in Annex A. These include the relationship between 

carbon nanotube dose, cobalt impurity dose and PMN and 

LDH (Figures A1 and A2); the relationship between titanium 

dioxide dose and aggregate diameter for LDH and total protein 

(Figures A3 and A4); the relationship between aggregate 

diameter and recovery time for titanium dioxide nanoparticles 

and LDH and total protein (Figures A5 and A6); and the 

relationship between aggregate diameter and purity (Figure 

A7) and aggregate diameter and Gibbs Free Energy for BAL 

LDH following exposure to metal oxide nanoparticles.  

DISCUSSION 

In terms of an individual designing or specifying a 

nanomaterial for a particular application and wanting to 

minimize risks from toxicity at the same time, certain factors 

including particle size, shape, and chemical makeup would be 

at the forefront of easily manipulatable design characteristics. 

If a designer can reduce the toxic risk through careful selection 

of these factors while continuing to meet functional objectives, 

they would likely do so.  

However, the effects of changes in particle size on toxicity 

are still a matter of some debate. Aggregation of nanoparticles 

into larger particles is also debated as whether it may 

exacerbate toxicity or alternatively to not have a significant 

effect [13]. It is also unclear from the published literature 

whether impurities should be considered important or 

unimportant contributors to toxicity [14], or further, to what 

actual extent differences in chemical makeup account for 

differences in toxicity between different nanoparticles.  

Effects of Particle Size and Aggregation 

Particle size and aggregation were thought to be important 

determinants of toxicity for nanomaterials, especially the idea 

that as the particles became smaller and potentially more 

highly reactive, their toxicity could markedly increase [15]. 

Although the experimental data including cellular-level in 

vitro experiments is mixed, larger particle sizes and aggregate 

do at least sometimes increase the resulting toxicity [16]. 

For carbon nanotubes, we see an overall effect of both 

length and diameter. Increasing diameter, which may also be 

an indicator of carbon nanotube stiffness, was associated with 

increasing toxicity (Figure 3), with two thresholds of 5nm and 

30nm. CNTs with a diameter less than 5nm are single-walled 

nanotubes, while those with larger diameters are multi-walled. 

The greatest toxicity is exhibited by CNTs with large diameters 

and short lengths. By way of comparison, asbestos fibers are on 

average longer (by 2-5 times) and have much larger diameters 

(by about two orders of magnitude) than the typical carbon 

nanotube.  

For titanium dioxide, very small particles do in fact seem 

to generally produce higher dose-response effects than larger 

titanium dioxide nanoparticles (Figure A10). This only occurs 

for very small particles, and fewer data points are available in 

this size range making this conclusion more uncertain than the 

general observation that dose-response is not influenced much 

by particle size over most of the wide range of tested sizes. 

 Total Dose (µg/kg) 
< 5150 

Y = 32.5 ± 88.9 
N = 525 

Y = 20.3 ± 44.2 
N = 345 

Y = 375 ± 233 
N = 180 

inequality is 

false 

inequality is 

true 

 
Figure 1: Example of a single-branch regression tree 

with two leaf nodes displaying the predicted mean output 

(Y) and standard deviation at each node along with the 

sample size (N). The branch decision rule in this case is 

an inequality based on the total dose of nanoparticles 

received.  
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Figure 2: [A] Change in Neutrophil count in BAL fluid following pulmonary exposure to carbon nanotubes. [B] Change in lactate 

dehydrogenase in BAL fluid following pulmonary exposure to carbon nanotubes. [C] Change in lactate dehydrogenase in BAL fluid 

following exposure to titanium dioxide nanoparticles. [D] Change in total protein in BAL fluid following exposure to titanium 

dioxide nanoparticles. 
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Figure 3: Effects of pulmonary exposure to carbon nanotubes at three dose levels, and all values of nanotube length and diameter: 

minimum dose is 2 µg/kg; median dose is 3250 µg/kg; maximum dose is 6500 µg/kg. [A] Change in Lactate dehydrogenase (LDH) in 

BAL fluid following exposure. [B] Change in Neutrophils count in BAL fluid following exposure. Values other than dose, length, and 

diameter, such as recovery period, and % cobalt impurity are held constant at their median reported values. These results suggest that 

larger diameter CNTs (multi-walled CNTs) produce a significantly increased immune response (PMN counts), but only a mildly 

increased LDH concentration.  
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Figure 4: Effects of pulmonary exposure to titanium dioxide nanoparticles based on changes in dose, aggregate diameter (MMAD), 

and purity. [A] Changes in lactate dehydrogenase (LDH) in BAL fluid [B] Changes in total protein concentration in BAL fluid. Other 

variables in the model are held constant at their median values. The minimum dose is 35 µg/kg. The median dose is 1.8×10 6 µg/kg. 

The maximum dose is 3.5×106 µg/kg. These results indicate that increasing purity is associated with a mildly decreasing LDH 

concentration, but has little impact on total protein concentration. The size of particle aggregates appears to have negligible effect for  

either measure. 
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Figure 5: Effects of pulmonary exposure to metal oxide nanoparticles including titanium dioxide, zinc oxide, magnesium oxide, and 

silicon dioxide, based on changes in [A] aggregation (MMAD) and the Gibbs free energy, and primary particle size and specific 

surface area [B]. The minimum dose is 300 µg/kg. The median dose is 8,000 µg/kg. And, the maximum dose is 16,000 µg/kg. These 

plots indicate that changes in total dose by mass affect the observed toxicity to a much greater degree than any effects from size or 

chemical factors.  
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When considering the metal oxides as a group, particle 

size does affect the BAL concentration of LDH to some extent, 

with larger particles causing higher LDH concentrations. 

Particle size contributes to model variance reduction (Figure 

B5), but the magnitude of the difference in LDH is dwarfed by 

the change associated with higher doses (Figure 5).  

This is opposite of the effect observed for titanium dioxide 

data analyzed alone, where titanium dioxide nanoparticles 

smaller than 40 nm caused at most a 2-fold increase in LDH. It 

must be noted that the entire metal oxide data set did not 

include any particles that small except for titanium dioxide 

nanoparticles, so the effect of very small diameter metal oxide 

nanoparticles should not be considered to be well defined.  

Effects of Impurities 

The importance of impurities in explaining the toxicity of 

nanoparticles has long been debated for carbon nanotubes, and 

these data appear to clearly indicate that the cobalt content of 

CNTs (see Figure A1) has the effect of increasing the immune 

response, whether sensitizing the system to the effects of CNTs 

exposure, or causing such an effect independently. The metallic 

impurities that exist together with the CNTs are remants of the 

metallic catalysts used in the manufacturing process.  

For titanium dioxide nanoparticles, on the other hand, the 

impurities (or purity) of the particles is not a significant 

contributor (see Figure 4) to inhalational toxicity. This is most 

likely due to the fact that impurities in titanium dioxide 

nanoparticle manufacturing include much more inert materials 

than the metals associated with carbon nanotubes. The 

impurities were not often characterized in the nano-TiO2 

toxicology studies. 

Effects of Chemical Differences 

A variety of different quantitative chemical descriptors 

have been proposed and tested with models to predict in vitro 

toxicity of metal oxide nanoparticles [9,17]. But, as seen in 

Figure 5, the results of pulmonary exposure studies on rodents 

appear to indicate that the total mass of metal oxide 

nanoparticles is a much more important predictor than any 

chemical or physical descriptors. In fact, if all chemical 

descriptors were excluded from the model, the fraction of 

explained variance (or R2 value) only decreased from 0.97 to 

0.93.  

The magnitude of the change in LDH as shown in Figure 

5 due to particle size, aggregation, or Gibb’s Free Energy are 

dwarfed by the magnitude of change due to simply increasing 

the total mass of metal oxide nanoparticles the animals are 

exposed to. While this analysis only includes a few different 

metal oxides, these oxides do differ significantly in terms of 

solubility, thermodynamic stability, and reactivity. While other 

quantitative chemical descriptors were tested including metal 

group or period from the periodic table, the mean isoelectric 

point, the surface charge, the enthalpy of formation, and 

crystalline structure, the Gibb’s Free Energy proved to have the 

greatest apparent effect, but only a slight one.  

CONCLUSIONS 

Random forest models even when trained on an 

incomplete data set can provide useful risk assessment of the 

benefits or costs of possible design tradeoffs in the area of 

nanoparticle toxicity. Using these models to quantitatively 

summarize the current knowledge and visualize the 

relationships between particle design parameters contributes to 

understanding the risks of a new technology. This is especially 

true during the early stages of implementation when the 

science may not have developed mechanistic explanations for 

why one material may pose a higher risk than another.  

The pulmonary toxicity measured by LDH release of metal 

oxide nanoparticles as a group including titanium dioxide, 

magnesium oxide, silicon dioxide, and zinc oxide does not 

appear to be highly dependent on physical characteristics of 

the particles, and depends only slightly on chemical 

characteristics, at least within the ranges that have been tested 

to date in animals. This leads to the conclusion that for these 

materials, the first and best risk mitigation may be only to 

minimize exposure.  

Design characteristics for carbon nanotubes are much 

more important, relatively, to pulmonary toxicity, at least for 

the relatively short term exposures that have been examined so 

far. These characteristics include the proportion of metallic 

impurities like cobalt, and the nanotube length and diameter. 

CNT diameter is important over a wide range of doses and 

combinations of other variables and should be minimized to 

mitigate toxicity. 

Meta-analysis of toxicity studies such as this one have the 

ability to quantitatively compare the claims of single studies 

against the larger field of study and to quantify the relative 

contributions of a large number of factors. Those the individual 

studies form the basis for this analysis, their conclusions are 

re-evaluated in light of other findings and minor effects can be 

distinguished from major ones. Such information could be 

taken into account in future product and process design 

decisions that utilize nanoparticles in order to mitigate risks to 

workers, consumers, and businesses. Meta-analyses could also 

play a role in determining future regulatory decisions 

regarding these materials, by helping distinguish significant 

from insignificant effects on toxicity.  
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ANNEX A 

NANOPARTICULATE TOXICITY RISK CONTOUR PLOTS 

 

 

This annex contains additional toxicity risk contour plots 

generated by the random forest models.  
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Figure A1: Changes in RF model predicted BAL 

neutrophils count following exposure to carbon nanotubes 

as a function of changes in total dose and the dose of cobalt, 

a common toxic impurity (up to 0.53% by weight of total 

CNTs). This suggests that Co and total CNTs both 

independently contribute to higher neutrophils count.  
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Figure A2: Changes in RF model predicted BAL LDH 

following exposure to carbon nanotubes as a function of 

changes in total dose and the dose of cobalt, a common 

toxic impurity (up to 0.53% by weight of total CNTs). This 

suggests that total dose is much more important than Co 

content for increasing LDH concentration.  
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Figure A3: Changes in RF model predicted BAL 

neutrophils count following exposure to carbon nanotubes 

as a function of changes in total dose and aggregation 

(MMAD, mass mode aerodynamic diameter). This suggests 

that aggregation only has a small effect on neutrophils count 

as compared to total dose, and also that low to moderate 

doses are relatively similar in response.  
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Figure A4: Changes in RF model predicted BAL LDH 

following exposure to carbon nanotubes as a function of 

changes in total dose and aggregation (MMAD, mass mode 

aerodynamic diameter). This suggests both that total dose is 

a more important predictor of LDH than aggregation, but 

also that less aggregation can increase LDH as well. 
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Figure A5: Changes in RF model predicted BAL total 

protein following exposure to titanium dioxide 

nanoparticles as a function of changes in total dose and 

aggregation (MMAD, mass mode aerodynamic diameter). 

This suggests that low aggregation levels are more toxic 

than higher ones, and that recover time is not an important 

factor, but the scale of these differences in small overall. 
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Figure A6: Changes in RF model predicted BAL LDH 

following exposure to titanium dioxide nanoparticles as a 

function of changes in total dose and aggregation (MMAD, 

mass mode aerodynamic diameter). This suggests that in 

terms of predicting LDH response, neither recovery time 

nor aggregation is consistently detrimental or beneficial, so 

more data would be required.  
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Figure A7: Changes in RF model predicted BAL LDH 

following exposure to metal oxide nanoparticles (TiO2, 

MgO, ZnO, SiO2) as a function of changes in aggregation 

(MMAD, mass mode aerodynamic diameter), and purity. 

Based on the scale, there is little difference in toxicity 

across this range of variables indicating these factors play 

little role in toxicity.  
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Figure A8: Changes in RF model predicted BAL LDH 

following exposure to metal oxide nanoparticles (TiO2, 

MgO, ZnO, SiO2) as a function of changes in aggregation 

(MMAD, mass mode aerodynamic diameter), and Gibbs 

Free Energy, a descriptor of the chemical energy available 

in the metal oxide compound. This suggests that 

aggregation is much less important than differences in 

chemical makeup [other results, see Figure 5, indicate that 

Gibbs Free Energy is much less important than total dose]. 
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Figure A9: Changes in RF model predicted BAL LDH 

following exposure to metal oxide nanoparticles (TiO2, 

MgO, ZnO, SiO2) as a function of total dose and recovery 

period. This indicates that total dose dominates the change 

in LDH due to longer recovery periods.  
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Figure A10: Changes in RF model predicted BAL LDH 

following exposure to titanium dioxide nanoparticles as a 

function of total dose and average particle size. This 

indicates that very small TiO2 nanoparticles are more toxic 

than those in most of the possible range of sizes.  
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ANNEX B 

DETAILS ON RANDOM FOREST MODEL STRUCTURE AND LEARNING 

 

This annex contains details on the random forest model 

structures employed in this analysis, learning statistics, error, 

and goodness-of-fit metrics.  

Random Forest Model Variable Importance 

There are many different ways to represent the importance 

of variables in a random forest models. All of these methods 

consider the information gain achieved by each branch node 

summed by input variable and averaged across all of the 

regression trees in the forest. Some methods of calculating 

information gain include entropy, standardized mean 

difference, Gini coefficient, and variance reduction. Generally 

the results as calculated by these methods are very similar. We 

have chosen to utilize variance reduction as the primary 

information gain metric primarily due to comparability to 

other methods of evaluating different kinds of models.  

The following figures (B1 through B6) display the internal 

structure of the RF models and their relative reliance on 

different input variables to reduce the error of the models. The 

height of the columns is not directly analogous to magnitude of 

the change in outcome associated with a unit change in 

input—the magnitude of change in toxicity is better observed 

in the contour plots. 
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Figure B1: RF model variable importance as measured by 

variance reduction attributable to each variable for the 

prediction of BAL neutrophils count following exposure to 

carbon nanotubes.  
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Figure B2: RF model variable importance as measured by 

variance reduction attributable to each variable for the prediction 

of BAL LDH count following exposure to carbon nanotubes. 

 

Column colors reflect whether changes in a given variable 

when applied to a branch split in the RF model were associated 

with a positive or negative change in the model output. For 

example, increases total dose is usually associated with 

increasing toxic responses, and increasing recovery time is 

usually associated with decreasing recovery time. Sometimes, 

these relationships can be complex or non-linear and result in 

a variable having different effects in different parts of the 

variable space.  
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Figure B3: RF model variable importance as measured by 

variance reduction attributable to each variable for the 

prediction of BAL LDH count following exposure to 

titanium dioxide nanoparticles. 
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Figure B4: RF model variable importance as measured by 

variance reduction attributable to each variable for the 

prediction of BAL total protein count following exposure to 

titanium dioxide nanoparticles.  
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Figure B5: RF model variable importance as measured by 

variance reduction attributable to each variable for the 

prediction of BAL LDH count following exposure to metal 

oxide nanoparticles include titanium dioxide, magnesium 

oxide, silicon dioxide,  
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Random Forest Model Learning Progression 

These figures display the error of the RF model in 

predicting the actual observed values as additional regression 

trees are added to the forest. Each RF model contains 1,000 

trees. As these graphs show, the minimal error state is usually 

realized by the model once the model has achieved a size of 

100-200 trees.  
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Figure B6: RF model error as a function of trees included 

in model for prediction of BAL neutrophils following 

pulmonary exposure to carbon nanotubes. 
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Figure B7: RF model error as a function of trees included 

in model for prediction of BAL LDH following pulmonary 

exposure to carbon nanotubes. 
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Figure B8: RF model error as a function of trees included 

in model for prediction of BAL total protein following 

pulmonary exposure to titanium dioxide nanoparticles.  
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Figure B9: RF model error as a function of trees included 

in model for prediction of BAL LDH following pulmonary 

exposure to titanium dioxide nanoparticles.  
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Figure B10: RF model error as a function of trees included 

in model for prediction of BAL LDH following pulmonary 

exposure to metal oxide nanoparticles including titanium 

dioxide, magnesium oxide, silicon dioxide, and zinc oxide.  
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ANNEX C 

TABLE OF DATA SOURCES 

 

 

Table C-1: Listing of all rodent pulmonary toxicity studies included in this meta-analysis.  

 

Reference First Author Year Nanoparticle 
Total Dose 

(µg/kg) 

Recovery 

Period 

(days) 

Exposure 

Mode 

Endpoint(s) 

Measured 

[18] Pauluhn J. 2010 CNT* 105 – 6,290 1 – 90 Inhalation PMN, LDH 

[19] Muller J. 2005 CNT* 2 – 8 3 Instillation PMN, LDH 

[20] Shvedova A. 2008 CNT* 250 – 1,000 1 – 7 Instillation PMN, LDH 

[21] Porter 2010 CNT* 435 – 1,740 1 – 28 Aspiration PMN, LDH 

[22] Inoue 2008 CNT* 4,000 1 Instillation PMN 

[23] Shvedova A. 2005 CNT* 490 – 1,970 1 – 60 Aspiration PMN 

[24] Shvedova A. 2007 CNT* 1,851 1 Aspiration PMN, LDH 

[25] Warheit D. 2004 CNT* 1,000 – 5,000 1 – 30 Instillation LDH 

[26] Muller J. 2008 CNT* 8,890 3 Instillation LDH 

[27] 
Ellinger-

Ziegelbauer H. 
2009 CNT* 180 – 3,900 7 – 90 

Inhalation 
LDH 

[28] Bermudez E. 2002 TiO2 10,000 – 90,000  0 – 365 Inhalation PMN 

[29] Grassian V. 2007 TiO2 35 – 3,300 0 – 14 Inhalation PMN, LDH 

[30] Nemmar A. 2007 TiO2 1,000 – 5,000 1 Instillation PMN 

[31] Oberdorster G. 1994 TiO2 295 – 2300 0 Instillation PMN 

[32] Warheit D. 2006 TiO2 300 – 10,000 0 – 84 Instillation PMN, LDH 

[33] Renwick L. 2004 TiO2 300 – 1200 1 Instillation PMN 

[34] Rehn B. 2003 TiO2 750 – 6,000 0 – 90 Instillation PMN 

[35] Osier M. 1997 TiO2 750 – 3,750 0 – 7 Inhalation PMN 

[36,37]  Warheit D. 2007 TiO2 1,000 – 5,000 0 – 84 Instillation PMN, LDH 

[38] Warheit D. 2010 TiO2 1,000 – 5,000  0 – 30  Instillation  LDH 

[39] Kobayashi N. 2009 TiO2 5,000  0 – 10  Instillation  LDH 

[40] Sayes C. 2007 SiO2, ZnO 1,000 – 5,000 1 – 90 Instillation  LDH 

[13] Gosens I. 2010 SiO2 1,600 1 Instillation  LDH 

[6] Warheit D. 2009 ZnO, MgO 1,000 – 5,000 1 – 90 
Instillation, 

Inhalation  
LDH 

 
*The carbon nanotube (CNT) portion of this pulmonary toxicity data set is available for download at 

http://nanohub.org/resources/13515 [41]  

 


